Чем состоит отличие клеток растений. Растительная и животная клетка

Клетка – это структурная и функциональная единица живого организма, которая несет генетическую информацию, обеспечивает обменные процессы, способна к регенерации и самовоспроизведению.

Есть одноклеточные особи и развитые многоклеточные животные и растения. Их жизнедеятельность обеспечивается работой органов, которые построены из разных тканей. Ткань, в свою очередь, представлена совокупностью клеток схожих по строению и выполняемым функциям.

Клетки разных организмов имеют свои характерные свойства и строение, но есть общие составляющие присущие всем клеткам: и растительным, и животным.

Органеллы свойственные всем типам клеток

Ядро – один из важных компонентов клетки, содержит генетическую информацию и обеспечивает передачу ее потомкам. Окружено двойной мембраной, что изолирует его от цитоплазмы.

Цитоплазма – вязкая прозрачная среда, заполняющая клетку. В цитоплазме размещены все органоиды. Цитоплазма состоит из системы микротрубочек, которая обеспечивает четкое перемещение всех органелл. А также контролирует транспорт синтезированных веществ.

Клеточная мембрана – оболочка, которая отделяет клетку от внешней среды, обеспечивает транспорт веществ в клетку и выведение продуктов синтеза или жизнедеятельности.

Эндоплазматическая сеть – мембранная органелла, состоит из цистерн и канальцев, на поверхности которых происходит синтез рибосом (гранулярная ЭПС). Места, где нет рибосом, образуют гладкий эндоплазматический ретикулум. Гранулярная и агранулярная сеть не отграничены, а переходят друг в друга и соединяются с оболочкой ядра.

Комплекс Гольджи – стопка цистерн, сплюснутых в центре и расширенных на периферии. Предназначен для завершения синтеза белков и дальнейшего транспорта их из клетки, вместе с ЭПС образует лизосомы.

Митохондрии – двухмембранные органоиды, внутренняя мембрана формирует выступы внутрь клетки – кристы. Отвечают за синтез АТФ, энергетический обмен. Выполняет дыхательную функцию (поглощая кислород и выделяя СО 2).

Рибосомы – отвечают за синтез белка, в их структуре выделяют малую и большую субъединицы.

Лизосомы – осуществляют внутриклеточное переваривание, за счет содержания гидролитических ферментов. Расщепляют захваченные чужеродные вещества.

Как в растительных, так и животных клетках есть, помимо органелл, непостоянные структуры — включения. Они появляются при повышении обменных процессов в клетке. Они выполняют питательную функцию и содержат:

  • Зерна крахмала в растениях, и гликоген — в животных;
  • белки;
  • липиды – высокоэнергетические соединения, обладают большей ценностью, чем углеводы и белки.

Есть включения, не играющие роли в энергетическом обмене, они содержат продукты жизнедеятельности клетки. В железистых клетках животных включения накапливают секрет.

Органеллы свойственные только растительной клетке


Клетки животных в отличие от клеток растений не содержат вакуолей, пластид, клеточной стенки.

Клеточная стенка формируется из клеточной пластинки, образуя первичную и вторичную клеточную оболочки.

Первичная клеточная стенка встречается в недифференцированных клетках. В ходе созревания между мембраной и первичной клеточной стенкой закладывается вторичная оболочка. По своему строению она сходна с первичной, только имеет больше целлюлозы и меньшее количество воды.

Вторичная клеточная стенка оснащена множеством пор. Пора – это место, где между первичной оболочкой и мембраной отсутствует вторичная стенка. Поры размещены попарно в смежных клетках. Размещенные рядом клетки связываются друг с другом плазмодесмой – это канал, представляющий собой тяж цитоплазмы, выстланный плазмолеммой. Через него клетки обмениваются синтезированными продуктами.

Функции клеточной стенки :

  1. Поддержание тургора клетки.
  2. Придает форму клеткам, выполняя роль скелета.
  3. Накапливает питательные продукты.
  4. Защищает от внешнего воздействия.

Вакуоли – органеллы, наполненные клеточным соком, участвуют в переваривании органических веществ (сходны с лизосомами животной клетки). Образуются при помощи совместной работы ЭПС и комплекса Гольджи. Сначала формируется и функционирует несколько вакуолей, во время старения клетки они сливаются в одну центральную вакуоль.

Пластиды – автономные двухмембранные органеллы, внутренняя оболочка имеет выросты – ламеллы. Все пластиды делят на три типа:

  • Лейкопласты – безпигментные образования, способны запасать крахмал, белки, липиды;
  • хлоропласты – зеленные пластиды, содержат пигмент хлорофилл, способны к фотосинтезу;
  • хромопласты – кристаллы оранжевого цвета, из-за наличия пигмента каротина.

Органеллы свойственные только животной клетке


Отличие растительной клетки от животной заключается в отсутствии в ней центриоли, трехслойной мембраны.

Центриоли – парные органеллы, расположены вблизи ядра. Принимают участие в формировании веретена деления и способствуют равномерному расхождению хромосом к разным полюсам клетки.

Плазматическая мембрана — для клеток животных характерна трехслойная, прочная мембрана, построена из липидов протеинов.

Сравнительная характеристика растительной и животной клетки

Сравнительная таблица животной и растительной клетки
Свойства Растительная клетка Животная клетка
Строение органелл Мембранное
Ядро Сформированное, с набором хромосом
Деление Размножение соматических клеток, путем митоза
Органоиды Сходный набор органелл
Клеточная стенка + -
Пластиды + -
Центриоли - +
Тип питания Автотрофный Гетеротрофный
Энергетический синтез С помощью митохондрий и хлоропластов Только с помощью митохондрий
Метаболизм Преимущество анаболизма над катоболизмом Катаболизм превышает синтез веществ
Включения Питательные вещества (крахмал), соли Гликоген, белки, липиды, углеводы, соли
Реснички Крайне редко Есть

Растительные клетки благодаря хлоропластам осуществляют процессы фотосинтеза – преобразуют энергию солнца в органические вещества, животные клетки на это не способны.

Митотическое деление растения идет преимущественно в меристеме, характеризуется наличием дополнительного этапа – препрофазы, в организме животных митоз присущ всем клеткам.

Размеры отдельных растительных клеток (около 50мкм) превышают размеры животных клеток (примерно 20мкм).

Взаимосвязь между клетками растений осуществляется за счет плазмодесмы, животных – при помощи десмосом.

Вакуоли растительной клетки занимают большую часть ее объёма, в животных – это мелкие образования в небольших количествах.

Клеточная стенка растений построена из целлюлозы и пектина, у животных мембрана состоит из фосфолипидов.

Растения не способны активно передвигаться, поэтому приспособились автотрофному способу питания, синтезируя самостоятельно все необходимые питательные вещества из неорганических соединений.

Животные – гетеротрофы и используют экзогенные органические вещества.

Сходство в структуре и функциональных возможностях растительных и животных клеток указывает на единство их происхождения и принадлежности к эукариотам. Их отличительные черты обусловлены различным способом жизни и питания.

Все живые организмы, за исключением вирусов, состоят из клеток. При этом вирусы нельзя назвать в полной мере самостоятельными живыми организмами. Для размножения им нужны клетки, т. е. они заражают другие организмы. Таким образом, мы можем сказать, что жизнь в полной мере может осуществляться только в клетках.

Клетки разных живых организмов имеют общий план строения, многие процессы в них протекают одинаково. Однако между клетками организмов, принадлежащих к разным царствам , есть некоторые ключевые различия. Так, например, клетки бактерий не имеют ядер. У клеток животных и растений ядра есть. Но у них есть другие различия.

У клеток растений в отличие от животных есть три выраженных особенности. Это наличие клеточной стенки , пластид и центральной вакуоли.

И клетки растений, и клетки животных окружены клеточной мембраной. Она ограничивает содержимое клетки от внешней среды, пропускает одни вещества и не пропускает другие. При этом у растений с внешней стороны от мембраны есть еще клеточная стенка , или клеточная оболочка . Она достаточно жесткая и придает растительной клетке форму. Благодаря клеточным стенкам растениям не нужен скелет. Без них растения бы наверно «растеклись» по земле. А так даже трава может стоять вертикально. Чтобы вещества могли проникать через клеточную оболочку, в ней есть поры. Также через эти поры клетки контактируют между собой, образуя цитоплазматические мостики. Клеточная стенка состоит из целлюлозы.

Пластиды есть только у клеток растений. К пластидам относятся хлоропласты, хромопласты и лейкопласты. Наиболее важное значение имеют хлоропласты . В них протекает процесс фотосинтеза, при котором из неорганических веществ синтезируются органические. Животные синтезировать органические вещества из неорганических не могут. Они получают с пищей готовые органические вещества, при необходимости расщепляют их до более простых и синтезируют уже свои органические вещества. Несмотря на то, что растения могут фотосинтезировать, подавляющее большинство органических веществ в них образуется также из других органических. Однако родоначальником всего органического в них служит органическое вещество, которое получается в хлоропластах из неорганических веществ. Это вещество - глюкоза.

Крупная центральная вакуоль характерна только для растительных клеток. В животных клетках тоже бывают вакуоли. Однако по мере роста клетки они не сливаются в одну большую вакуоль, которая оттесняет все остальное содержимое клетки к мембране. Именно так происходит у растений. Вакуоль содержит клеточный сок, содержащий в основном запасные вещества. Крупная вакуоль создает внутреннее давление на клеточную мембрану. Таким образом наряду с клеточной оболочкой она поддерживает форму клетки.

Запасным питательным веществом углеводного типа в растительных клетках является крахмал, а в животных - гликоген. Крахмал и гликоген очень похожи по строению.

У животных клеток также есть «свои» органеллы, которых нет у высших растений. Это центриоли. Они участвуют в процессе деления клеток.

Остальные органеллы у растительных и животных клеток сходны по строению и функциям. Это митохондрии, комплекс Гольджи, ядро, эндоплазматическая сеть, рибосомы и некоторые другие.

В растительной и животной клетке существуют общие органоиды, такие как ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи. Однако растительная клетка имеет существенные отличия от животной клетки.

Растительная клетка как и животная, окружена цитоплазматической мембраной, но кроме неё ограничена толстой клеточной стенкой, состоящей из целлюлозы, которой нет у животных клеток.

Накапливающие клеточный сок вакуоли есть как в растительных, так и в животных клетках, но в животных клетках они выражены слабо.

Преобладание синтетических процессов над процессами освобождения энергии — это одна из наиболее характерных особенностей обмена веществ растений. Первичный синтез углеводов из неорганических веществ осуществляется в пластидах. Так, в животных клетках, в отличие от растительных, отсутствуют следующие пластиды: хлоропласты (отвечают за реакцию фотосинтеза), лейкопласты (отвечают за накопление крахмала) и хромопласты (придают окраску плодам и цветам растений)

Выводы сайт

  1. В растительной клетке присутствует прочная и толстая клеточная стенка из целлюлозы
  2. В растительной клетке развита сеть вакуолей, в животной клетке она развита слабо
  3. Растительная клетка содержит особые органоиды — пластиды (а именно, хлоропласты, лейкопласты и хромопласты), а животная клетка их не содержит.

Структурные отличия

1. У растений у клеток есть твердая целлюлозная оболочка, расположенная

над мембраной, у животных ее нет (т.к. у растений большая наружная

поверхность клеток нужна для фотосинтеза).

2. Для клеток растений характерны крупные вакуоли (т.к. слабо развита

выделительная система).

3. В клетках растений есть пластиды (т.к. растения автотрофы

фотосинтетики).

4. В клетках растений (за исключением некоторых водорослей) нет

оформленного клеточного центра, у животных - есть.

Функциональные отличия

1. Способ питания: растительная клетка - автотрофный, животная –

гетеротрофный.

2. У растений основное запасное вещество - крахмал (у животных - гликоген).

3. Клетки растений как правило более обводнены (содержат

до 90% воды), чем клетки животных.

4. Синтез веществ резко преобладает над их распадом, поэтому растения

могут накапливать громадную биомассу и способны к неограниченному росту.

3. Структура ядра и его функции. Ядро является особой по своей важности органеллой клетки, центром управления обменом веществ, а также местом хранения и воспроизводства наследственной информации. Форма ядер разнообразна и обычно соответствует форме клетки. Так, в паренхимных клетках ядра округлые, в прозенхимных - обычно вытянутые. Гораздо реже ядра могут быть сложного строения, состоять из нескольких долей или лопастей, или даже иметь ветвистые выросты. Чаще всего клетка содержит одно ядро, но у некоторых растений клетки могут быть многоядерными. В составе ядра принято различать: а) ядерную оболочку – кариолемму, б) ядерный сок - кариоплазму, в) одно или два круглых ядрышка, г) хромосомы.

Основную массу сухого вещества ядра составляют белки (70-96%) и нуклеиновые кислоты, кроме того, здесь же содержатся все вещества, характерные для цитоплазмы.

Оболочка ядра двойная и состоит из наружной и внутренней мембран, имеющих строение, подобное мембранам цитоплазмы. Наружная мембрана связана обыкновенно с каналами эдоплазматической сети в цитоплазме. Между двумя мембранами оболочки имеется пространство, превышающее по ширине толщину мембран. Оболочка ядра имеет многочисленные поры, диаметр которых относительно велик и достигает 0,02-0,03 мкм. Благодаря порам кариоплазма и цитоплазма непосредственно взаимодействуют.

Ядерный сок (кариоплазма), по вязкости близкий к мезоплазме клетки, имеет несколько повышенную кислотность. В ядерном соке содержатся белки и рибонуклеиновые кислоты (РНК), а также ферменты, участвующие в образовании нуклеиновых кислот.

Ядрышко - обязательная структура ядра, не находящегося в состоянии деления. Ядрышко крупнее в молодых клетках, активно образующих белок. Есть основание считать, что основная функция ядрышка связана с новообразованием рибосом, которые затем поступают в цитоплазму.

В отличие от ядрышка хромосомы, как правило, видны только в делящихся клетках. Число и форма хромосом постоянны для всех клеток данного организма и для вида в целом. Поскольку растение образуется из зиготы после слияния женской и мужской половых клеток, число хромосом их суммируется и считается диплоидным, обозначается как 2n. В то же время число хромосом половых клеток одинарное, гаплоидное – n.

Рис. 1 Схема строения растительной клетки

1 – ядро; 2 – ядерная оболочка (две мембраны - внутренняя и внешняя – и перинуклеарное пространство); 3 – ядерная пора; 4 – ядрышко (гранулярный и фибриллярный компоненты); 5 – хроматин (конденсированный и диффузный); 6 - ядерный сок; 7 – клеточная стенка; 8 – плазмалемма; 9 - плазмодесмы; 10 – эндоплазматическая агранулярная сеть; 11 - эндоплазматическая гранулярная сеть; 12 – митохондрия; 13 - свободные рибосомы; 14 – лизосома; 15 – хлоропласт; 16 – диктиосома аппарата Гольджи; 17 – гиалоплазма; 18 – тонопласт; 19 – вакуоль с клеточным соком.

Ядро является, прежде всего, хранителем наследственной информации, а также основным регулятором деления клеток и синтеза белка. Синтез белка осуществляется в рибосомах вне ядра, но под его непосредственным контролем.

4. Эргастические вещества растительной клетки.

Все вещества клетки можно разделить на 2 группы: конституционные и эргастические вещества.

Конституционные вещества входят в состав клеточных структур и участвуют в обмене веществ.

Эргастические вещества(включения, неактивные вещества) – это вещества временно или постоянно выведенные из обмена веществ и находящиеся в клетке в неактивном состоянии.

Эргастические вещества (включения)

Запасные вещества конечные продукты

обмена (шлаки)

крахмал (в виде крахмальных зёрен)

масла (в виде липидных капель) кристаллы

запасные белки (обычно в виде алейроновых зёрен) солей

Запасные вещества

1. Основное запасное вещество растений – крахмал – самое характерное, самое распространенное вещество, специфическое для растений. Это радиально разветвлённый углевод-полисахарид, имеющий формулу (С 6 Н 10 О 5) n .

Крахмал откладывается в виде крахмальных зерен в строме пластид (чаще лейкопластов) вокруг центра кристаллизации (образовательного центра, центра слоистости) слоями. Различают простые крахмальные зерна (один центр слоистости) (картофель, пшеница) и сложные крахмальные зерна (2, 3 и более центров слоистости) (рис, овес, гречка). Крахмальное зерно состоит из двух компонентов: амилазы (растворимой части зерна, благодаря которой йод окрашивает крахмал в синий цвет) и амилопектина (нерастворимой части), который только набухает в воде. По свойствам крахмальные зёрна – это сферокристаллы. Слоистость видна потому, что разные слои зерна содержат разное количество воды.

Т.о., крахмал образуется только в пластидах, в их строме и в строме же запасается.

По месту локализации различают несколько типов крахмала .

1) Ассимиляционный (первичный) крахмал – образуется на свету в хлоропластах. Образование твёрдого вещества – крахмала из образующейся при фотосинтезе глюкозы предотвращает вредное повышение осмотического давления внутри хлоропласта. Ночью, когда фотосинтез прекращается, первичный крахмал гидролизуется до сахарозы и моносахаров и транспортируется в лейкопласты –амилопласты, где и откладывается как:

2) Запасной (вторичны й) крахмал – зёрна более крупные, могут занимать весь лейкопласт.

Часть вторичного крахмала называется оберегаемый крахмал - это НЗ растения, тратится только в самых крайних случаях.

Крахмальные зёрна довольно мелкие. Их форма строго постоянна для каждого вида растений. Поэтому по ним можно определить из каких растенйи приготовлена мука, отруби и т.д..

Крахмал встречается во всех органах растений. Он легко образуется и легко растворяется (в этом его большой +).

Крахмал очень важен для человека, так как наша основная пища - углеводная. Много крахмала в зерновках злаков, в семенах бобовых и гречишных. Он накапливается во всех органах, но наиболее им богаты семена, подземные клубни, корневища, паренхима проводящих тканей корня и стебля.

2. Масла (Липидные капли)

Жирные маслаЭфирные масла

А) Жирные масла сложные эфиры глицерина и жирных кислот. Основная функции – запасающая. Это вторая после крахмала форма запасных веществ.

Преимущества перед крахмалом : занимая меньший объем, дают больше энергии (находятся в виде капель).

Недостатки : менее растворимы, чем крахмал и труднее расщепляются.

Жирные масла чаще всего находятся в гиалоплазме в виде липидных капель, иногда образуя большие скопления. Реже – откладываются в лейкопластах – олеопластах.

Жирные масла встречаются во всех органах растений, но чаще всего в семенах, плодах и древесинной паренхиме у древесных растений (дуб, береза).

Значение для человека: очень велико, так как усваиваются легче, чем животные жиры.

Важнейшие масличные культуры: подсолнечник (акад. Пустовойт создал сорта, содержащие до 55% масла в семенах) подсолнечное масло;

Кукуруза кукурузное масло;

Горчица горчичное масло;

Рапс рапсовое масло;

Лён льняное масло;

Тунг тунговое масло;

Клещевина касторовое масло.

Б) Эфирные масла – очень летучи и ароматны, встречаются специализированных клетках выделительных тканей (желёзки, железистые волоски, вместилища и т.д.).

Функции: 1) предохраняют растения отперегрева и переохлаждения (при испарении); 2) есть эфирные масла, убивающие бактерий и других микроорганизмов – фитонциды . Фитонциды обычно выделяются листьями растений (тополь, черёмуха, сосна).

Значение для человека :

1) используются в парфюмерии (розовое масло получают из лепестков казанлыкской розы; лавандовое масло, гераниевое масло и др.);

2) в медицине (ментоловое масло (мята), шалфеевое масло (шалфей), тимоловое масло (тимьян), эвкалиптовое масло (эвкалипт), пихтовое масло (пихта) и др.).

3. Белки.

В клетке различают 2 типа белков:

1) структурные белки активные, входят в состав мембран гиалоплазмы, органоидов, участвуют в обменных процессах и определяют свойства органоидов и клеток в целом. При избытке часть белков может выводиться из обмена веществ и становиться запасными белками.

2) Запасные белки

Аморфные (бесструктурные, Кристаллические

накапливаются в гиалоплазме, (мелкие кристаллы в обезвоженных

иногда в вакуолях) вакуолях – алейроновые зёрна)

Алейроновые зёрна чаще всего образуются в запасающих клетках сухих семян (например, бобовые, злаки).

Конечные продукты обмена (шлаки).

Конечные продукты обмена веществ откладываются чаще всего в вакуолях, где нейтрализуются и не отравляют протопласт. Много их скапливается в старых листьях, которые растение периодически сбрасывает, а также в мёртвых клетках корки, где они не мешают растению.

Шлаки – это кристаллы минеральных солей. Наиболее обычны:

1) оксалат кальция (щавелевокислый кальций) – откладывается в вакуолях в виде кристаллов различной формы. Могут быть одиночные кристаллы – монокристаллы , сростки кристаллов – друзы , стопки игольчатых кристаллов – рафиды, очень мелкие многочисленные кристаллы – кристаллический песок.

2) карбонат кальция (СаСО 3) – откладывается на внутренней части оболочки, на выростах внутренних стенок (цистолиты) оболочки, придаёт клетке прочность.

3) кремнезём (SiO 2) - откладывается в оболочках клеток (хвощи, бамбук, осоки), обеспечивает прочность оболочки (но в то же время хрупкость).

Обычно – шлаки – это конечные продукты обмена, но иногда, при нехватке солей в клетке, кристаллы могут растворяться и минеральные вещества опять вовлекаются в обмен веществ.

Используемая литература:

Андреева И. И., Родман Л.С. Ботаника: учеб. пособие. - М.: КолосС, 2005. - 517 с.

Серебрякова Т.И., Воронин Н.С., Еленевский А.Г. и др.. Ботаника с основами фитоценологии: анатомия и морфология растений: учебник. - М. : Академкнига, 2007. - 543 с.

Яковлев Г.П., Челомбитько В.А., Дорофеев В.И. Ботаника: учебник. - Спб: СпецЛит, 2008 г. – 687 с.

Многие ключевые различия между растениями и животными берут начало в структурных различиях на клеточном уровне. У одних есть некоторые детали, которые есть у других, и наоборот. Прежде, чем мы найдем главное отличие животной клетки от растительной (таблица далее в статье), давайте выясним, что они имеют общего, а затем исследуем то, что делает их разными.

Животные и растения

Вы, сгорбившись в кресле, читаете эту статью? Старайтесь сидеть прямо, вытяните руки к небу и потянитесь. Чувствуете себя хорошо, верно? Нравится вам это или нет, но вы - животное. Ваши клетки - это мягкие сгустки цитоплазмы, но вы можете использовать ваши мышцы и кости, чтобы стоять на ногах и передвигаться. Геторотрофы, как и все животные, должны получать питание из других источников. Если вы чувствуете голод или жажду, вам нужно просто встать и дойти до холодильника.

Теперь подумайте о растениях. Представьте себе высокий дуб или крохотные травинки. Они стоят в вертикальном положении, не имея мышц или костей, но они не могут позволить себе ходить куда-то, чтобы получить еду и питье. Растения, автотрофы, создают свои собственные продукты, используя энергию Солнца. Отличие животной клетки от растительной в таблице №1 (смотри далее) очевидно, но есть также и много общего.

Общая характеристика

Растительная и животная клетки являются эукариотическими, а это уже большое сходство. Они имеют мембранно-связанное ядро, которое содержит генетический материал (ДНК). Полупроницаемая плазматическая мембрана окружает оба типа ячеек. Их цитоплазма содержит многие из тех же частей и органелл, в том числе рибосомы, комплексы Гольджи, эндоплазматический ретикулум, митохондрии и пероксисомы и другие. В то время как растительные и животные клетки являются эукариотическими и имеют много общего, они также отличаются по нескольким параметрам.

Особенности растительных клеток

Теперь давайте рассмотрим особенности Как большинство из них могут стоять вертикально? Эта способность имеется благодаря клеточной стенке, которая окружает оболочки всех растительных клеток, обеспечивает поддержку и жесткость и часто дает им прямоугольный или даже шестиугольной внешний вид при наблюдении в микроскоп. Все эти структурные единицы имеют жесткую правильную форму и содержат много хлоропластов. Стенки могут быть толщиной в несколько микрометров. Их состав варьируется в зависимости от групп растений, но они обычно состоят из волокон углеводной целлюлозы, погруженных в матрицу из белков и прочих углеводов.

Клеточные стенки помогают сохранить прочность. Давление, создаваемое поглощением воды, способствует их жесткости и дает возможность для вертикального роста. Растения не способны передвигаться с места на место, поэтому они нуждаются в том, чтобы делать свои собственные продукты питания. Органелла, называемая хлоропластом, отвечает за фотосинтез. Растительные клетки могут содержать несколько таких органелл, иногда сотни.

Хлоропласты окружены двойной мембраной и содержат стеки мембраносвязанных дисков, в которых специальными пигментами поглощается солнечный свет, и эта энергия используется для питания растения. Одной из самых известных структур является крупная центральная вакуоль. занимает большую часть объема и окружена мембраной, называемой тонопласт. В ней хранится вода, а также ионы калия и хлорида. По мере того, как клетка растет, вакуоль поглощает воду и помогает удлинить ячейки.

Отличия животной клетки от растительной (таблица №1)

Растительные и животные структурные единицы имеют некоторые отличия и сходства. Например, у первых нет клеточной стенки и хлоропластов, они круглые и неправильной формы, в то время как растительные имеют фиксированную прямоугольную форму. И те и те являются эукариотическими, поэтому они имеют ряд общих особенностей, таких как наличие мембраны и органелл (ядро, митохондрии и эндоплазматический ретикулум). Итак, рассмотрим сходства и отличия между растительной и животной клетки в таблице №1:

Животная клетка Растительная клетка
Клеточная стенка отсутствует присутствует (формируется из целлюлозы)
Форма круглая (неправильная) прямоугольная (неподвижная)
Вакуоль одна или несколько мелких (гораздо меньше, чем в растительных клетках) Одна большая центральная вакуоль занимает до 90% объема клетки
Центриоли присутствуют во всех клетках животных присутствуют в более низких растительных формах
Хлоропласты нет Растительные клетки имеют хлоропласты, потому что они создают свои собственные продукты питания
Цитоплазма есть есть
Рибосомы присутствуют присутствуют
Митохондрии имеются имеются
Пластиды отсутствуют присутствуют
Эндоплазматический ретикулум (гладкий и шершавый) есть есть
Аппарат Гольджи имеется имеется
Плазматическая мембрана присутствует присутствует
Жгутики
могут быть найдены в некоторых клетках
Лизосомы есть в цитоплазме обычно не видны
Ядра присутствуют присутствуют
Реснички присутствуют в большом количестве растительные клетки не содержат реснички

Животные против растений

Какой позволяет сделать таблица «Отличие животной клетки от растительной» вывод? Обе являются эукариотическими. Они имеют настоящие ядра, где находится ДНК и отделены от других структур ядерной мембраной. Оба типа имеют сходные процессы по воспроизводству, включая митоз и мейоз. Животные и растения нуждаются в энергии, они должны расти и поддерживать нормальную в процессе дыхания.

И там и там есть структуры, известные как органеллы, которые являются специализированными для выполнения функций, необходимых для нормального функционирования. Представленные отличия животной клетки от растительной в таблице №1 дополняются некоторыми общими чертами. Оказывается, они имеют много общего. И те и те имеют некоторые из тех же компонентов, в том числе ядра, комплекс Гольджи, эндоплазматический ретикулум, рибосомы, митохондрии и так далее.

В чем отличие растительной клетки от животной?

В таблице №1 сходства и отличия представлены достаточно кратко. Рассмотрим эти и другие моменты более подробно.

  • Размер. Животные клетки обычно имеют меньшие размеры, чем клетки растений. Первые составляют от 10 до 30 микрометров в длину, в то время как растительные клетки имеют диапазон длины от 10 до 100 микрометров.
  • Форма. Животные клетки бывают различных размеров и, как правило, имеют круглую или неправильную форму. Растительные больше похожи по размеру и, как правило, имеют прямоугольную или кубическую форму.
  • Хранение энергии. Животные клетки запасают энергию в виде сложных углеводов (гликогена). Растительные запасают энергию в виде крахмала.
  • Дифференцировка. В клетках животных только стволовые клетки способны переходить в другие Большинство видов растительной клетки не способно к дифференциации.
  • Рост. Животные клетки увеличиваются в размерах за счет числа клеток. Растительные же поглощают больше воды в центральной вакуоли.
  • Центриоли. Клетки животных содержат цилиндрические структуры, которые организуют сборку микротрубочек во время деления клетки. Растительные, как правило, не содержат центриолей.
  • Реснички. Они встречаются в клетках животных, но не являются обычным явлением в растительных клетках.
  • Лизосомы. Эти органеллы содержат ферменты, которые переваривают макромолекулы. Клетки растений редко содержат функцию выполняет вакуоль.
  • Пластиды. Животные клетки не имеют пластид. Клетки растений содержат пластиды, такие как хлоропласты, которые необходимы для фотосинтеза.
  • Вакуоль. Животные клетки могут иметь много мелких вакуолей. Растительные клетки имеют большую центральную вакуоль, которая может занимать до 90% объема клетки.

Структурно растительные и животные клетки очень похожи, они содержат мембраносвязанные органеллы, такие как ядро, митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и пероксисомы. Оба также содержат аналогичные мембраны, цитозоль и цитоскелетные элементы. Функции этих органелл также очень похожи. Однако то небольшое отличие растительной клетки от животной (таблица №1), которое существуют между ними, является весьма существенным и отражает разницу в функциях каждой клетки.

Итак, мы провели выяснив, в чем их сходство и отличия. Общими являются план строения, химические процессы и состав, деление и генетический код.

В то же время эти мельчайшие единицы принципиально отличаются способом питания.

Поделитесь с друзьями или сохраните для себя:

Загрузка...