Закалка металлов токами высокой частоты. Поверхностная закалка (ТВЧ)

Индукционный нагрев (Induction Heating) - метод бесконтактного нагрева токами высокой частоты (англ. RFH - radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода.

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Преимущества.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева - эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал - металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе - так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы - это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования - циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
- повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
- применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Современные твч-генераторы - это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

А) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания - заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается - это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания.

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка - дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности - схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот - напряжение стремится к нулю, а ток максимален.

Статья взята с сайта http://dic.academic.ru/ и переработана в более понятный для читателя текст, компанией ООО «Проминдуктор».

Пайка инструмента

Пайка алюминия

Термообработка

ЗАО «Современная Машиностроительная Компания», официальный представитель CIEA (Италия), предлагает Вашему вниманию генераторы индукционного нагрева (установки ТВЧ) для термообработки изделий из металла.

ТВЧ печи для закалки

С момента своего создания, в конце 60-х годов, фирма CEIA занималась разработкой и изготовлением промышленного оборудования, базирующегося на применении действия эффекта электромагнитного поля. В конце 80-х CEIA представляет первый твёрдотельный индукционный нагреватель на рынке специального оборудования для пайки. В 1995 CEIA представляет ещё одно новшество - модельный ряд приборов для индукционного нагрева «Power Cube Family», в который входят:

  • генераторы (мощностью от 2,8 кВт до 100 кВт и рабочими частотами от 25 кГц до 1800 кГц) и нагревательные головы;
  • контрольные устройства (контроллер, мастер-контроллер, специальный программатор), обеспечивающие работу в автоматическом или полуавтоматическом режиме;
  • оптические пирометры с диапазоном измерения от 80 до 2000 ºС;
  • подставки для нагревательных голов, пирометров и устройства подачи припоя .

Компания CIEA полностью осуществляет все стадии производства: от разработки приборов и электронных плат до сборки генераторов. На производстве работает высококвалифицированный персонал. Каждый прибор проходит обязательное электромагнитное тестирование.

ТВЧ печи для закалки от ЗАО “СМК”

Модульная конструкция ТВЧ установок индукционного нагрева позволяет компоновать рабочие станции с различными характеристиками, соответствующими техническим и экономическим потребностям заказчика. Это также даёт возможность менять изначальную комплектацию (при изменении модели генератора или контроллера).

Компания ЗАО «Современная Машиностроительная Компания» имеет опыт автоматизации процессов термической обработки по условиям технического задания Заказчика.

Принцип работы:

Индукционный нагрев осуществляется за счет энергии электромагнитного поля. Петля индуктора необходимого размера подносится к обрабатываемой детали. Средне- и высокочастотный переменный ток (ТВЧ), проходящий по петле, создает на поверхности обрабатываемой детали вихревые токи, величина которых может контролироваться и программироваться. Индукционный нагрев происходит без непосредственного контакта, при этом термообработке подвергаются только металлические части. Индукционный нагрев характеризуется высокой эффективностью переноса энергии без потерь тепла. Глубина проникновения индуцируемых токов напрямую зависит от рабочей частоты генератора (ТВЧ установки индукционного нагрева) - чем выше частота, тем больше плотность тока на поверхности обрабатываемой детали. Понижая рабочую частоту можно увеличить глубину проникновения ТВЧ, т.е. глубину нагрева.

Преимущества:

Генераторы (ТВЧ установки индукционного нагрева) CEIA обладают следующими преимуществами:

  • высокая эффективность;
  • малые габариты и возможность встраивания в автоматизированные лини;
  • локализация области нагрева (благодаря точно подобранному индуктору);
  • микропроцессор, обеспечивающий повторяемость рабочего цикла;
  • система самодиагностики, подающая сигнал и выключающая установку в случае неполадки;
  • возможность выноса в рабочую зону только нагревательной головы с индуктором (соединительный кабель длиной до 4 м);
  • оборудование соответствует требованиям электротехнической безопасности и имеет сертификат ISO 9001.

Применение:

Генераторы (ТВЧ установки индукционного нагрева) CIEA применяется для различных видов термообработки всех токопроводящих изделий (металлические сплавы, цветные металлы, углеродные и кремниевые соединения):

  • нагрева;
  • закалки;
  • отжига;
  • пайки инструмента, в том числе и алмазного или твердосплавного;
  • пайки микросхем, разъёмов, кабелей;
  • пайки алюминия.

ПКФ «Цвет» специализируется на оказании услуг металлообработки, у нас большой опыт работы в этом направлении. Мы оказываем различные услуги упомянутого спектра, а закалка ТВЧ входит в их число. Эта услуга пользуется широким спросом на территории РФ. Компания обладает всем необходимым оборудованием для решения рассматриваемой задачи. Сотрудничество с нами будет выгодным, удобным и комфортным.

Основные характеристики

Закалка стали ТВЧ позволяет придать материалу достаточный уровень прочности. Данная процедура считается самой распространенной. Подобной обработке подвергают не только саму деталь, но и отдельные части заготовки, которые должны обладать определенными показателями прочности. Применение упомянутой процедуры существенно продлевает срок эксплуатации различных деталей.

Закалка металла ТВЧ основана на применении электротока, проходящего по поверхности детали, последняя находится в индукторе. В результате обработки деталь нагревается на определенную глубину, остальная часть изделия не нагревается. Данный метод имеет множество преимуществ, так как применения данной технологии дает возможность контролировать режим зажим закалки, заменить легированную сталь на углеродистую.

Обработанные заготовки приобретают высокие прочностные характеристики, в ходе выполнения задачи не возникает закалочных трещин. Обрабатываемая поверхность не окисляется и не обезуглероживается. Закалка токами высокой частоты выполняется в короткий срок, поскольку отсутствует необходимость нагревать заготовку целиком. Компания применяет высококачественное оборудования для выполнения обработки рассматриваемого вида. Мы осуществляем закалку ТВЧ на высоком профессиональном уровне.

Наши преимущества

Услуга закалка ТВЧ — одна из основных специализаций ПКФ «Цвет», мы предоставляем ее на выгодных условиях. Все работы выполняются на современном оборудовании, с применением самых передовых технологий. Все это делает сотрудничество с нами удобным и комфортным.

Чтобы оформить заказ позвоните нам по телефону. Сотрудники фирмы быстро зарегистрируют вашу заявку, они ответят на все интересующие вас вопросы. Компания предоставляет услуги доставки готовой продукции. Транспортировка изделий выполняется по всей территории Российской Федерации.

Многие ответственные детали работают на истирание и одновременно подвергаются действию ударных нагрузок. Такие детали должны иметь высокую поверхностную твердость, хорошую износостойкость и в то же время не быть хрупкими, т. е. не разрушаться под действием ударов.

Высокая твердость поверхности деталей при сохранении вязкой и прочной сердцевины достигается методом поверхностной закалки.

Из современных методов поверхностной закалки наибольшее распространение в машиностроении находят следующие: закалка при нагреве токами высокой частоты (ТВЧ) ; пламенная закалка и закалка в электролите.

Выбор того или иного метода поверхностной закалки обусловливается технологической и экономической целесообразностью.

Закалка при нагреве токами высокой частоты. Такой метод является одним из самых высокопроизводительных методов поверхностного упрочнения металлов. Открытие этого метода и разработка его технологических основ принадлежит талантливому русскому ученому B. П. Вологдину.

Высокочастотный нагрев основан на следующем явлении. При прохождении переменного электрического тока высокой частоты по медному индуктору вокруг последнего образуется магнитное поле, которое проникает в стальную деталь, находящуюся в индукторе, и индуктирует в ней вихревые токи Фуко. Эти токи и вызывают нагрев металла.

Особенностью нагрева ТВЧ является то, что индуктируемые в стали вихревые токи распределяются по сечению детали не равномерно, а оттесняются к поверхности. Неравномерное распределение вихревых токов приводит к неравномерному ее нагреву: поверхностные слои очень быстро нагреваются до высоких температур, а сердцевина или совсем не нагревается или нагревается незначительно благодаря теплопроводности стали. Толщина слоя, по которому проходит ток, называется глубиной проникновения и обозначается буквой δ.

Толщина слоя в основном зависит от частоты переменного тока, удельного сопротивления металла и магнитной проницаемости. Эту зависимость определяют по формуле

δ = 5,03-10 4 корень из (ρ/μν) мм,

где ρ - удельное электрическое сопротивление, ом мм 2 /м;

μ, - магнитная проницаемость, гс/э;

v - частота, гц.

Из формулы видно, что с увеличением частоты глубина проникновения индукционных токов уменьшается. Ток высокой частоты для индукционного нагрева деталей получают от генераторов.

При выборе частоты тока, кроме нагреваемого слоя, необходимо учитывать форму и размеры детали с тем, чтобы получить высокое качество поверхностной закалки и экономно использовать электрическую энергию высокочастотных установок.

Большое значение для качественного нагрева деталей имеют медные индукторы.

Наиболее распространены индукторы, имеющие с внутренней стороны систему мелких отверстий, через которые подается охлаждающая вода. Такой индуктор является одновременно нагревательным и охлаждающим устройством. Как только помещенная в индуктор деталь нагреется до заданной температуры, ток автоматически отключится и из отверстий индуктора поступит вода и спреером (водяным душем) охладит поверхность детали.

Детали можно также нагревать в индукторах, не имеющих душирующих устройств. В таких индукторах детали после нагрева сбрасываются в закалочный бак.

Закалка ТВЧ в основном производится одновременным и непрерывно-последовательным способами. При одновременном способе закаливаемая деталь вращается внутри неподвижного индуктора, ширина которого равна закаливаемому участку. Когда заданное время нагрева истекает, реле времени отключает ток от генератора, а другое реле, сблокированное с первым, включает подачу воды, которая небольшими, но сильными струями вырывается из отверстий индуктора и охлаждает деталь.

При непрерывно-последовательном способе деталь неподвижна, а вдоль нее перемещается индуктор. В этом случае проипоследовательный нагреве закаливаемого участка детали, после чего участок попадает под струю воды душирующего устройства, расположенного на некотором расстоянии от индуктора.

Плоские детали закаливают в петлевых и зигзагообразных индукторах, а зубчатые колеса с мелким модулем - в кольцевых индукторах одновременным способом. Макроструктура закаленного слоя мелкомодульного зубчатого колеса автомобиля, изготовленного из стали марки ППЗ-55 (сталь пониженной прокаливаемости). Микроструктура закаленного слоя представляет собой мелкоигольчатый мартенсит.

Твердость поверхностного слоя деталей, закаленных при нагреве ТВЧ, получается на 3-4 единицы HRC выше, чем твердость при обычной объемной закалке.

Для повышения прочности сердцевины детали перед закалкой ТВЧподвергают улучшению или нормализации.

Применение нагрева ТВЧ для поверхностной закалки машинных деталей и инструмента позволяет резко сократить продолжительность технологического процесса термической обработки. Кроме того, этот метод дает возможность изготовлять для закалки деталей механизированные и автоматизированные агрегаты, которые устанавливаются в общем потоке механообрабатывающих цехов. В результате этого отпадает необходимость транспортирования деталей в специальные термические цехи и обеспечивается ритмичная работа поточных линий и сборочных конвейеров.

Пламенная поверхностная закалка. Этот метод заключается в нагреве поверхности стальных деталей ацетилено-кислородным пламенем до температуры, превышающей на 50-60°С верхнюю критическую точку A C 3 , с последующим быстрым охлаждением водяным душем.

Сущность процесса пламенной закалки состоит в том, что тепло, подводимое газовым пламенем от горелки к закаливаемой детали, концентрируется на ее поверхности и значительно превышает количество тепла, распространяемого в глубь металла. В результате такого температурного поля поверхность детали сначала быстро нагревается до температуры закалки, затем охлаждается, а сердцевина детали практически остается незакаленной и после охлаждения не изменяет свою структуру и твердость.

Пламенную закалку применяют для упрочнения и повышения износостойкости таких крупных и тяжелых стальных деталей, как коленчатые валы механических прессов, крупномодульные зубчатые колеса, зубья ковшей экскаваторов и т. п. Кроме стальных деталей, пламенной закалке подвергают детали, изготовленные из серого и перлитного чугуна, например направляющие станин металлорежущих станков.

Пламенная закалка разделяется на четыре вида:

а) последовательную, когда закалочная горелка с охлаждающей жидкостью перемещается вдоль, поверхности обрабатываемой неподвижной детали;

б) закалку с вращением, при которой горелка с охлаждающей жидкостью остается неподвижной, а закаливаемая деталь вращается;

в) последовательную с вращением детали, когда деталь непрерывно вращается и вдоль нее перемещается закалочная горелка с охлаждающей жидкостью;

г) местную, при которой неподвижная деталь нагревается до заданной температуры закалки неподвижной горелкой, после чего охлаждается струей воды.

Способ пламенной закалки катка, который вращается с определенной скоростью, а горелка остается неподвижной. Температура нагрева контролируется при помощи миллископа.

В зависимости от назначения детали глубина закаленного слоя обычно берется равной 2,5-4,5 мм.

Основными факторами, влияющими на глубину закалки и структуру закаливаемой стали, являются: скорость передвижения закалочной горелки относительно закаливаемой детали или детали относительно горелки; скорость выхода газов и температура пламени.

Выбор закалочных машин зависит от формы деталей, способа закалки и заданного количества деталей. Если нужно закаливать разнообразные по форме и размерам детали и в небольших количествах, то целесообразнее применять универсальные закалочные машины. На заводах обычно используют специальные установки и токарные станки.

Для закалки применяют два вида горелок: модульные с модулем от М10 и до МЗ0 и многопламенные со сменными наконечниками, имеющими ширину пламени от 25 до 85 мм . Конструктивно горелки устроены таким образом, что отверстия для газового пламени и охлаждающей воды расположены в один ряд, параллельно. Вода в горелки подается от водопроводной сети и служит одновременно для закалки деталей и охлаждения мундштука.

В качестве горючих газов применяются ацетилен и кислород.

После пламенной закалки микроструктура в различных зонах детали различная. Закаленный слой получает высокую твердость и остается чистым, без следов окисления и обезуглероживания.

Переход структуры от поверхности детали к сердцевине происходит плавно, что имеет большое значение для повышения эксплуатационной стойкости деталей и полностью устраняет вредные явления - растрескивание и отслоение закаленных слоев металла.

Твердость изменяется в соответствии со структурой закаленного слоя. На поверхности детали она равна 56-57 HRC , а затем понижается до твердости, которую имела деталь до поверхностной закалки. Для обеспечения высокого качества закалки, получения равномерной твердости и повышенной прочности сердцевины литые и кованые детали перед пламенной закалкой подвергаются отжигу или нормализации в соответствии с обыкновенными режимами.

Поверхностная за калка в электролите. Сущность этого явления состоит в том, что если постоянный электрический ток пропускать через электролит, то на катоде образуется тонкий слои, состоящий измельчайших пузырьков водорода. Благодаря плохой электрической проводимости водорода сопротивление прохождению электрического тока сильно возрастает и катод (деталь) нагревается до высокой температуры, после чего закаливается. В качестве электролита обычно применяют водный 5-10-процентный раствор кальцинированной соды.

Процесс закалки несложен и заключается в следующем. Закаливаемую деталь опускают в электролит и присоединяют к отрицательному полюсу генератора постоянного тока напряжением 200-220 в и плотностью 3- 4 а/см 2 , в результате чего она становится катодом. В зависимости от того, какая часть детали подвергается поверхностной закалке, деталь погружают на определенную глубину. Деталь нагревается за несколько секунд, и ток выключают. Охлаждающей средой является тот же электролит. Итак, ванна с электролитом служит и нагревательной печью и закалочным баком.

Закалочная установка для нагрева т. в. ч. состоит из генератора т. в. ч.,

понижающего трансформатора, конденсаторных батарей, индуктора, станка (иногда станок заменяется приспособлением для приведения в движение детали или индуктора) и аппаратуры, несущей вспомогательную службу (реле времени, реле управления подачей закалочной жидкости, сигнальных, блокировочных и регулирующих устройств).

В рассматриваемых установках применяются такие генераторы т.в.ч. при средних частотах (500-10000 Гц) машинные генераторы, а в последнее время статические преобразователи тиристорного типа; при высоких частотах (60000 Гц и выше) ламповые генераторы. Перспективным видом генераторов являются ионные преобразователи, так называемые экситронные генераторы. Они позволяют свести потери энергии до минимума.

На рис. 5 изображена схема установки с машинным генератором. Кроме машинного генератора 2 и двигателя 3 с возбудителем 1, установка содержит понижающий трансформатор 4, конденсаторные батареи 6 и индуктор 5. Трансформатор понижает напряжение до безопасного (30-50 В) и одновременно увеличивает силу тока в 25-30 раз, доводя ее до 5000-8000 А.

Рисунок 5 Рисунок 6

Таблица 1 Типы и конструкции индукторов

На Рис. 6 показан пример закалки многовитковым индуктором. Закалка осуществляется следующим образом:

Деталь помещается внутри неподвижного индуктора. С запуском аппарата ТВЧ деталь начинает вращаться вокруг своей оси и одновременно нагреваться, потом с помощью автоматизированного управления подается жидкость (вода) и охлаждает делать. Весь процесс длиться от 30-45 секунд.

ТВЧ закалка – вид термообработки металла, в результате которого значительно повышается твердость и материал утрачивает пластичность. Отличие ТВЧ закалки от других способов закалки в том что нагрев производится при помощи специальных ТВЧ установок, которые действуют на предназначающуюся для закалки деталь токами высокой частоты. ТВЧ закалка обладает большим количеством преимуществ, главный из которых – полный контроль нагрева. Применение данных закалочных комплексов может значительно повысить качество выпускаемой продукции, так как процесс закалки производится в полностью автоматическом режиме, работа оператора заключается только в закреплении вала и включении цикла работы станка.

5.1.Преимущества индукционных закалочных комплексов (установки индукционного нагрева):

    ТВЧ закалка может производиться с точностью до 0,1 мм

    Обеспечение равномерного прогрева, индукционная закалка позволяет добиться идеального распределения твердости во всей длине вала

    Высокая твердость ТВЧ закалки достигается благодаря использованию специальных индукторов с водоводами, которые остужают вал незамедлительно после прогрева.

    ТВЧ закалочное оборудование (печи закалочные) подбирается или изготавливается в точном соответствии техническим заданием.

6.Удаление окалины в дробеструйных установках

В дробеструйных установках детали от окалины очищаются струей чугунной или стальной дроби. Струя создается сжатым воздухом давлением 0,3-0,5 МПа (пневматическая дробеструйная очистка) или быстровращающимися лопаточными колесами (механическая очистка дробеметами).

При пневматической дробеструйной очистке в установках может использоваться как дробь, так и кварцевый песок. Однако в последнем случае образуется большое количество пыли, доходящее до 5-10 % от массы очищаемых деталей. Попадая в легкие обслуживающего персонала, кварцевая пыль вызывает профессиональную болезнь - силикоз. Поэтому указанный способ применяется в исключительных случаях. При дробеструйной очистке давление сжатого воздуха должно составлять 0,5-0,6 МПа. Чугунная дробь изготовляется литьем жидкого чугуна в воду при распылении струи чугуна сжатым воздухом с последующей отсортировкой на ситах. Дробь должна иметь структуру белого чугуна с твердостью 500 НВ, ее размеры находятся в пределах 0,5-2-мм. Расход чугунной дроби составляет лишь 0,05-0,1 % от массы деталей. При очистке дробью получается более чистая поверхность детали, достигается большая производительность аппаратов и обеспечиваются лучшие условия труда, чем при очистке песком. Для защиты окружающей атмосферы от пыли дробеструйные установки снабжаются закрытыми кожухами с усиленной вытяжной вентиляцией. По санитарным нормам предельно допустимая концентрация пыли не должна превышать 2 мг/м3. Транспортировка дроби в современных установках полностью механизирована.

Основной частью пневматической установки является дробеструйный аппарат, который может быть нагнетательным и гравитационным. Простейший однокамерный нагнетательный дробеструйный аппарат (рис. 7) представляет собой цилиндр 4, имеющий вверху воронку для дроби, герметически закрывающуюся крышкой 5. Внизу цилиндр заканчивается воронкой, отверстие из которой ведет в смесительную камеру 2. Дробь подается поворотной заслонкой 3. В смесительную камеру через кран 1 подводится сжатый воздух, который захватывает дробь и транспортирует ее по гибкому шлангу 7 и соплу 6 на детали. Дробь находится под давлением сжатого воздуха вплоть до истечения из сопла, что повышает эффективность действия абразивной струи. В аппарате описанной однокамерной конструкции сжатый воздух необходимо временно отключать при его пополнении дробью.

Поделитесь с друзьями или сохраните для себя:

Загрузка...