История создания русского компьютера кратко. Компьютерный клуб_1 «История компьютера»

Под словом компьютер раньше подразумевался человек, который выполнял различные математические расчеты. Для выполнения расчетов этот человек использовал специальное механическое устройство называющееся «Абак».

В конце средневековья математики и инженеры в Европе начали получать значительную поддержку, и, таким образом, наметился сильный прогресс в развитии механических вычислительных устройств. К 17 веку была разработана система часового механизма. В период с начала 19 века и до начала 20 века были разработаны очень важные технологии, которые в дальнейшем оказали сильное влияние на развитие цифрового компьютера. Например, это такие изобретения как перфокарта и электронная лампа. Чарльз Бэббидж был первым, кто разработал полностью программируемый компьютер в 1837 году.
Но, к сожалению, он так и не смог довести его создание до конца по нескольким причинам.

Аналоговые компьютеры активно использовались в первой половине 20 века в различных научных исследованиях для проведения математических расчетов. Однако сразу после появления цифровых компьютеров они неизбежно устарели.

Первым цифровым компьютером был Atanasoff Berry Computer. Для вычисления он использовал бинарную систему счисления, параллельную обработку данных, раздельную память и вычислительные функции. Бинарная система счисления и электронные схемы используются в современных компьютерах, но впервые они были применены на Atanasoff Berry Computer.

В 1930 по 1940 годы продолжалась разработка еще более совершенных и эффективных компьютеров. Понемногу у компьютеров стали появляться возможности, которыми сейчас обладают все современные компьютеры; это цифровые электронные схемы и гибкость программирования.

Среди всех компьютеров тех лет наиболее выделялся из всех American ENIAC «Electronic Numerical Integrator and Calculator» (электронный цифровой интегратор и калькулятор). Для своего времени он был функционален, но был очень громоздким. Позже была разработана более совершенная система, называющаяся сохраняемая программная структура. Эта система является основой работы всех современных компьютеров. В1950 г. в компьютерах применялись стеклянные ламповые диоды. Позже их заменили электронные транзисторы; разработанные в 1960 г. компьютеры на основе транзисторов стали меньше, быстрее и дешевле, также они стали коммерчески выгодными. В 1970 году в компьютерах стали применяться технологии интегрированных микросхем, которые позволили сделать производство компьютеров массовым. С тех пор компьютеры стали доступны всем. Это было рождение персонального компьютера в том виде, в котором мы имеем его сейчас.

Одним из первых устройств (V-IV вв. до н.э.), с которых, можно считать, началась история развития компьютеров, была специальная доска, названная впоследствии «абак». Вычисления на ней проводились перемещением костей или камней в углублениях досок из бронзы, камня, слоновой кости и тому подобное. В Греции абак существовал уже в V в. до н.э., у японцев он назывался «серобаян», у китайцев — «суанпань». В Древней Руси для счета применялось устройство, похожее на абак, — «дощаный счет». В XVII веке этот прибор принял вид привычных российских счетов.

Абак (V-IV вв. до н.э.)

Французский математик и философ Блез Паскаль в 1642 г. создал первую машину, получившую в честь своего создателя название — Паскалина. Механическое устройство в виде ящика со многими шестернями кроме сложения выполняла и вычитание. Данные вводились в машину с помощью поворота наборных колесиков, которые отвечали числам от 0 до 9. Ответ появлялся в верхней части металлического корпуса.


Паскалина

В 1673 году Готфрид Вильгельм Лейбниц создал механическое счетное устройство (ступенчатый вычислитель Лейбница — калькулятор Лейбница), которое впервые не только складывало и вычитало, а еще умножало, делило и вычисляло квадратный корень. Впоследствии колесо Лейбница стало прототипом для массовых счетных приборов — арифмометров.


Модель ступенчатого вычислителя Лейбница

Английский математик Чарльз Бэббидж разработал устройство, которое не только выполняло арифметические действия, но и сразу же печатало результаты. В 1832 г. была построена десятикратно уменьшенная модель из двух тысяч латунных деталей, которая весила три тонны, но была способна выполнять арифметические операции с точностью до шестого знака после запятой и вычислять производные второго порядка. Эта вычислительная машина стала прообразом настоящих компьютеров, называлась она дифференциальной машиной.

Дифференциальная машина

Суммирующий аппарат с непрерывной передачей десятков создает российский математик и механик Пафнутий Львович Чебышев. В этом аппарате достигнута автоматизация выполнения всех арифметических действий. В 1881 году была создана приставка к суммирующему аппарату для умножения и деления. Принцип непрерывной передачи десятков широко использовался в различных счетчиках и вычислительных машинах.


Суммирующий аппарат Чебышева

Автоматизированная обработка данных появилась в конце прошлого века в США. Герман Холлерит создал устройство — Табулятор Холлерита — в котором , нанесенная на перфокарты, расшифровывалось электрическим током.

Табулятор Холлерита

В 1936 году молодой ученый из Кембриджа Алан Тьюринг придумал мысленный счетный аппарат-компьютер, который существовал только на бумаге. Его «умная машина» действовала по определенному заданному алгоритму. В зависимости от алгоритма, воображаемая машина могла применяться для самых разнообразных целей. Однако в то время это были чисто теоретические рассуждения и схемы, которые послужили прототипом программируемого компьютера, как вычислительного устройства, которое обрабатывает данные в соответствии с определенной последовательностью команд.

Информационные революции в истории

В истории развития цивилизации произошло несколько информационных революций — преобразований социальных общественных отношений вследствие изменений в области обработки, сохранения и передачи информации.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку цивилизации. Появилась возможность передачи знаний от поколений к поколениям.

Вторая (середина XVI в.) революция вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) революция с открытиями в области электричества, благодаря чему появились телеграф, телефон, радио, устройства, которые позволяют оперативно передавать и накапливать информацию в любом объеме.

Четвертая (с семидесятых годов XX в.) революция связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, системы передачи данных (информационные коммуникации).

Этот период характеризуют три фундаментальные инновации:

  • переход от механических и электрических средств преобразования информации к электронным;
  • миниатюризация всех узлов, устройств, приборов, машин;
  • создание программно-управляемых устройств и процессов.

История развития компьютерной техники

Потребность в хранении, преобразовании и передачи информации у человека появилась значительно раньше, чем был создан телеграфный аппарат, первая телефонная станция и электронная вычислительная машина (ЭВМ). Фактически весь опыт, все знания, накопленные человечеством, так или иначе, способствовали появлению вычислительной техники. История создания ЭВМ — общее название электронных машин для выполнения вычислений — начинается далеко в прошлом и связана с развитием практически всех сторон жизни и деятельности человека. Сколько существует человеческая цивилизация, столько времени используется определенная автоматизация вычислений.

История развития компьютерной техники насчитывает около пяти десятилетий. За это время сменилось несколько поколений ЭВМ. Каждое следующее поколение отличалось новыми элементами (электронные лампы, транзисторы, интегральные схемы), технология изготовления которых была принципиально иной. В настоящее время существует общепринятая классификация поколений ЭВМ:

  • Первое поколение (1946 — начало 50-х гг.). Элементная база — электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.
  • Второе поколение (конец 50-х — начало 60-х гг.). Элементная база — полупроводниковые . Улучшились по сравнению с ЭВМ предыдущего поколения практически все технические характеристики. Для программирования используются алгоритмические языки.
  • 3-е поколение (конец 60-х — конец 70-х). Элементная база — интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.
  • Четвёртое поколение (с середины 70-х — конец 80-х). Элементная база — микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.
  • Пятое поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, которая пока не увенчалась успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Вместе со сменой поколений ЭВМ менялся и характер их использования. Если сначала они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения расширилась. Сюда можно отнести обработку информации, автоматизацию управления производственно-технологическими и научными процессами и многое другое.

Принципы работы компьютеров Конрада Цузе

Идея о возможности построения автоматизированного счетного аппарата пришла в голову немецкому инженеру Конраду Цузе (Konrad Zuse) и в 1934 г. Цузе сформулировал основные принципы, на которых должны работать будущие компьютеры:

  • двоичная система счисления;
  • использование устройств, работающих по принципу «да / нет» (логические 1 / 0);
  • полностью автоматизированный процесс работы вычислителя;
  • программное управление процессом вычислений;
  • поддержка арифметики с плавающей запятой;
  • использование памяти большой емкости.

Цузе первым в мире определил, что обработка данных начинается с бита (бит он называл «статусом да / нет», а формулы двоичной алгебры — условными суждениями), первым ввел термин «машинное слово» (Word), первым объединил в вычислители арифметические и логические операции, отметив, что «элементарная операция компьютера — проверка двух двоичных чисел на равенство. Результатом будет тоже двоичное число с двумя значениями (равно, не равно)».

Первое поколение — ЭВМ с электронными лампами

Colossus I — первая вычислительная машина на лампах, созданная англичанами в 1943 г., для раскодирования немецких военных шифров; она состояла из 1800 электронных ламп — устройств для хранения информации — и была одним из первых программируемых электронных цифровых компьютеров.

ENIAC — был создан для расчета артиллерийских таблиц баллистики; этот компьютер весил 30 тонн, занимал 1000 квадратных футов и потреблял 130-140 кВт электроэнергии. Компьютер содержал 17468 вакуумных ламп шестнадцати типов, 7200 кристаллических диодов и 4100 магнитных элементов, и содержались они в шкафах общим объемом около 100 м 3 . ENIAC имел производительность 5000 операций в секунду. Общая стоимость машины составляла $ 750 000. Потребность в потребления электричества — 174 кВт, общее занимаемое пространство — 300 м 2 .


ENIAC — устройство для расчета артиллерийских таблиц баллистики

Еще один представитель 1-го поколения ЭВМ, на который следует обратить внимание, это EDVAC (Electronic Discrete Variable Computer). EDVAC интересен тем, что в нем была сделана попытка записывать программы электронным способом в так называемых «ультразвуковых линиях задержки» с помощью ртутных трубок. В 126 таких линиях было возможно сохранять 1024 строк четырехзначных двоичных чисел. Это была «быстрая» память. В качестве «медленной »памяти предполагалось фиксировать числа и команды на магнитном проводе, однако этот метод оказался ненадежным, и пришлось вернуться к телетайпным лентам. EDVAC работал быстрее своего предшественника, сложение занимало 1 мкс, деление — 3 мкс. Он содержал всего 3,5 тыс. электронных ламп и располагался на 13 м 2 площади.

UNIVAC (Universal Automatic Computer) представлял собой электронное устройство с программами, хранящимися в памяти, которые вводились туда уже не с перфокарт, а с помощью магнитной ленты; это обеспечивало высокую скорость чтения и записи информации, а, следовательно, и более высокое быстродействие машины в целом. Одна лента могла содержать миллион символов, записанных в двоичной форме. Ленты могли хранить и программы, и промежуточные данные.


Представители I-го поколения ЭВМ: 1) Electronic Discrete Variable Computer; 2) Universal Automatic Computer

Второе поколение — ЭВМ на транзисторах.

Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.

В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом (junction transistor). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.

Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.

Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.

В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м 2 . PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!


Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1

В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.

Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах («Раздан-2», «Минск — 2», «М-220» и «Днепр») находились еще в стадии разработки.

Третье поколение — малогабаритные ЭВМ на интегральных схемах

В 50-х и 60-х годах сборка электронного оборудования представляла трудоемкий процесс, который замедлялся возрастающей сложностью электронных схем. Так, например, компьютер типа CD1604 (1960 , Control Data Corp.) , содержал около 100 тыс. диодов и 25 тыс. транзисторов.

В 1959 американцы Джек Сент Клэр Килби (фирма Texas Instruments) и Роберт Н. Нойс (фирма Fairchild Semiconductor) независимо друг от друга изобрели интегральную схему (ИС) — совокупность тысяч транзисторов, размещенных на одном кристалле кремния внутри микросхемы.

Производство компьютеров на ИС (микросхемами их стали называть позже) было гораздо дешевле, чем на транзисторах. Благодаря этому многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения различных задач. В эти годы производство компьютеров приобрело промышленные масштабы.

В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах.


Представитель III-го поколения ЭВМ — ЕС-1022

Четвертое поколение — персональные компьютеры на процессорах

Предшественниками IBM PC были Apple II, Radio Shack TRS-80, Atari 400 и 800, Commodore 64 и Commodore PET.

Рождения персональных компьютеров (ПК, PC) с полным основанием связывают с процессорами Intel. Корпорация была основана в середине июня 1968 г. с тех пор Intel превратилась в крупнейшего в мире производителя микропроцессоров с числом сотрудников более 64 тысяч. Целью Intel было создание полупроводниковой памяти и, чтобы выжить, фирма стала брать и сторонние заказы на разработку полупроводниковых устройств.

В 1971 г.. Intel получила заказ на разработку набора из 12 микросхем для программируемых микрокалькуляторов, но инженерам Intel создание 12 специализированных чипов показалось громоздким и неэффективным. Задача сокращения номенклатуры микросхем была решена путем создания «спарки» с полупроводниковой памяти и исполнительного устройства, способного работать по командам, хранящимся в ней. Это был прорыв в философии создания вычислительных средств: универсальное логическое устройство в виде 4-разрядного центрального процессорного устройства i4004, который позже был назван первый микропроцессором. Он представлял собой набор из 4 чипов, в числе которых был один чип, управляемый командами, которые хранились в полупроводниковой внутренней памяти.

Как коммерческая разработка, микрокомпьютер (так тогда называлась микросхема) появился на рынке 11 ноября 1971 под названием 4004: 4 битный, содержащий 2300 транзисторов, тактовая частота 60 кГц, стоимость — $ 200. В 1972 г. компания Intel выпустила восьмибитный микропроцессор 8008, а в 1974 г. — его усовершенствованную версию Intel-8080, которая к концу 70-х годов стала стандартом для микрокомпьютерной индустрии. Уже в 1973 году во Франции появляется первый компьютер на базе процессора 8080 — Micral. По разным причинам этот процессор не имел успеха в Америке (в Советском Союзе он был скопирован и выпускался долгое время под названием 580ВМ80). Тогда же группа инженеров ушла из Intel и образовала фирму Zilog. Наиболее громким ее продуктом является Z80, который имеет расширенный набор команд 8080 и, что обеспечило его коммерческий успех для бытовых приборов, обходился одним напряжением питания 5В. На его основе был создан, в частности, компьютер ZX-Spectrum (иногда его называют по имени создателя — Sinclair), ставший практически прообразом Home PC середины 80-х. В 1981 г. Intel выпускает 16-разрядный процессор 8086 и 8088 — аналог 8086, за исключением внешней 8-битной шины данных (вся периферия тогда была еще 8-битной).

Конкурент Intel, компьютер Apple II отличался тем, что не был вполне законченным аппаратом и оставалась некоторая свобода для доработки непосредственно пользователем — можно было устанавливать дополнительные интерфейсные платы, платы памяти и др. Именно эта особенность, которую впоследствии стали называть «открытой архитектурой», стала его основным преимуществом. Успеху Apple II способствовали еще две новинки, разработаные в 1978 году. Недорогой накопитель на гибких дисках, и первая программа для коммерческих расчетов — электронная таблица VisiCalc.

Большой популярностью в 70-х годах пользовался компьютер Altair-8800, построенный на основе процессора Intel -8080. Хотя возможности Altair были довольно ограничены — оперативная память составляла всего 4 Kb, клавиатура и экран отсутствовали, его появление было встречено с большим энтузиазмом. Он был выпущен на рынок в 1975 году, и в первые месяцы было продано несколько тысяч комплектов машины.


Представители IV -го поколения ЭВМ: а) Micral; б) Apple II

Этот компьютер, разработанный фирмой MITS, продавался по почте в виде набора деталей для самостоятельной сборки. Весь комплект для сборки стоил $ 397, тогда как только один процессор от Intel продавался за $360.

Распространение ПК к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ — фирма IBM в 1979 выпустила IBM PC на базе процессора 8088. Существующее в начале 80-х годов программное обеспечение было ориентировано на обработку текстов и простых электронных таблиц, а сама мысль о том, что «микрокомпьютер» может стать привычным и необходимым устройством на работе и дома, казалась невероятной.

12 августа 1981 года IBM представила Personal Computer (PC), ставший, в сочетании с программным обеспечением от Microsoft, стандартом для всего парка ПК современного мира. Цена модели IBM PC с монохромным дисплеем составила около $3.000, с цветным — $6.000. Конфигурация IBM PC: процессор Intel 8088 с частотой 4,77 МГц и 29 тысячами транзисторов, 64 Кб оперативной памяти, 1 флоппи-дисковод емкостью 160 Кб, — обычный встроенный динамик. В это время запуск приложений и работа с ними были настоящей мукой: из-за отсутствия жесткого диска приходилось все время менять дискеты, не было ни «мыши», ни графического оконного пользовательского интерфейса, ни точного соответствия между изображением на экране и конечным результатом (WYSIWYG). Цветная графика была крайне примитивна, о трехмерной анимации или фотообработке не было и речи, однако история развития персональных компьютеров началась именно с этой модели.

В 1984 году IBM представила еще две новинки. Во-первых, была выпущена модель для домашних пользователей, названная PCjr на базе процессора 8088, котрая была оснащена едва ли не первой беспроводной клавиатурой, но успеха на рынке эта модель не добилась.

Вторая новинка — IBM PC AT. Важнейшая особенность: переход на микропроцессоры более высоких уровней (80286 с цифровым сопроцессором 80287) с сохранением совместимости с предыдущими моделями. Этот компьютер оказался законодателем стандартов на много лет вперед в целом ряде отношений: здесь впервые появилась 16-разрядная шина расширений (остающаяся стандартной и по сей день) и графические адаптеры EGA с разрешением 640х350 при глубине представления цвета 16 бит.

В 1984 г. состоялся выпуск первых компьютеров Macintosh с графическим интерфейсом, манипулятором «мышь» и многими другими атрибутами пользовательского интерфейса, без которых не мыслятся современные настольные компьютеры. Пользователей новый интерфейс не оставил равнодушными, но революционный компьютер не был совместим ни с прежними программами, ни с аппаратными компонентами. А в тогдашних корпорациях уже стали нормальными рабочими инструментами WordPerfect и Lotus 1-2-3. Пользователи уже привыкли и приспособились к символьному интерфейса DOS. С их точки зрения, Macintosh выглядел даже как-то несерьезно.

Пятое поколение компьютеров (с 1985 и по наше время)

Отличительные признаки V -го поколения:

  1. Новые технологии производства.
  2. Отказ от традиционных языков программирования таких, как Кобол и Фортран в пользу языков с повышенными возможностями манипулирования символами и с элементами логического программирования (Пролог и Лисп).
  3. Акцент на новые архитектуры (например, на архитектуру потока данных).
  4. Новые способы ввода-вывода, удобные для пользователя (например, распознавание речи и образов, синтеза речи, обработка сообщений на естественном языке)
  5. Искусственный интеллект (то есть автоматизация процессов решения задач, получения выводов, манипулирования знаниями)

Именно на рубеже 80-90-х сформировался альянс Windows-Intel. Когда в начале 1989 г. Intel выпустила микропроцессор 486, производители компьютеров не стали дожидаться примера со стороны IBM или Compaq. Началась гонка, в которую вступили десятки фирм. Но все новые компьютеры были чрезвычайно похожи друг на друга — их объединяла совместимость с Windows и процессоры от Intel.

В 1989 г. был выпущен процессор i486. Он имел встроенный математический сопроцессор, конвейер и встроенный кэш первого уровня.

Направления развития компьютеров

Нейрокомпьютеры можно отнести к шестому поколению ЭВМ. Несмотря на то, что реальное применение нейросетей началось относительно недавно, нейрокомпьютингу как научному направлению пошел седьмой десяток лет, а первый нейрокомпьютер был построен в 1958 году. Разработчиком машины был Фрэнк Розенблатт, который подарил своему детищу имя Mark I.

Теория нейронных сетей впервые была обозначена в работе МакКаллока и Питтса в 1943 г.: любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Интерес к нейрокомпьютингу снова вспыхнул в начале 80-х годов и был подогрет новыми работами с многослойным перцептроном и параллельными вычислениями.

Нейрокомпьютеры — это ПК, состоящих из множества работающих параллельно простых вычислительных элементов, которые называют нейронами. Нейроны образуют так называемые нейросети. Высокое быстродействие нейрокомпьютеров достигается именно за счет огромного количества нейронов. Нейрокомпьютеры построены по биологическим принципу: нервная система человека состоит из отдельных клеток — нейронов, количество которых в мозгу достигает 10 12 , при том, что время срабатывания нейрона — 3 мс. Каждый нейрон выполняет достаточно простые функции, но так как он связан в среднем с 1 — 10 тыс. других нейронов, такой коллектив успешно обеспечивает работу человеческого мозга.

Представитель VI-го поколения ЭВМ — Mark I

В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно. Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:

  • Световые потоки, в отличие от электрических, могут пересекаться друг с другом;
  • Световые потоки могут быть локализованы в поперечном направлении нанометровых размеров и передаваться по свободному пространству;
  • Взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создания параллельных архитектур.

В настоящее время ведутся разработки по созданию компьютеров полностью состящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.

Оптический компьютер имеет невиданную производительность и совсем другую, чем электронный компьютер, архитектуру: за 1 такт продолжительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных около 1 мегабайта и больше. К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров.

Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.

Биологические компьютеры — это обычные ПК, только основанные на ДНК-вычислений. Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.

Молекулярные компьютеры — это ПК, принцип действия которых основан на использовании изменении свойств молекул в процессе фотосинтеза. В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается только присвоить определенные логические значения каждом состояния, то есть «0» или «1». Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, «переключать» которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас «не за горами».

История развития компьютеров еще не закончена, помимо совершенствования старых, идет и разработка совершенно новых технологий. Пример тому квантовые компьютеры — устройства, работающие на основе квантовой механики. Полномасштабный квантовый компьютер — гипотетическое устройство, возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на передовом крае современной физики. Экспериментальные квантовые компьютеры уже существуют; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Сегодняшние персональные компьютеры сильно отличаются от массивных, неуклюжих устройств, возникших во время Второй мировой войны, и разница не только в их размерах. «Отцы» и «деды» современных десктопов и лэптопов не умели многое из того, с чем играючи справляются современные машины. Однако самый первый компьютер в мире стал прорывом в области науки и техники . Устраивайтесь поудобнее перед монитором, и мы расскажем о том, как зарождалась эпоха ПК.

Кто создал самый первый компьютер в мире

В 40-е годы прошлого столетия существовали сразу несколько устройств, которые могут претендовать на звание первого компьютера.

Z3

Конрад Цузе

Ранний компьютер, созданный немецким инженером Конрадом Цузе, который работал в полной изоляции от разработок других ученых. Он имел отдельный блок памяти и отдельную консоль для ввода данных. А в качестве их носителя выступала восьмидорожечная перфокарта, изготовленная Цузе из 35 мм кинопленки.

В машине было 2600 телефонных реле и ее можно было свободно программировать в двоичном коде с плавающей точкой. Аппарат Z3 использовался для аэродинамических расчетов, но был уничтожен при бомбежке Берлина в конце 1943 года. Цузе руководил реконструкцией своего детища в 1960-х годах, и сейчас эта программируемая машина демонстрируется в музее Мюнхена.

Устройство «Марк 1» задуманное профессором Говардом Эйкеном и выпущенное IBM в 1941 году, представляло собой первый в Америке программируемый компьютер. Машина стоила полмиллиона долларов, и применялась для разработки оборудования для ВМФ США, такого как торпеды и средства подводного обнаружения. Также «Марк 1» использовали при разработке имплозионных устройств для атомной бомбы.

Именно «Марк 1» можно назвать самым первым компьютером в мире. Его характеристики в отличие от немецкого Z3, позволяли выполнять вычисления в автоматическом режиме, не требуя вмешательства человека в процесс работы.

Atanasoff-Berry Computer (ABC)

В 1939 году профессор Джон Винсент Атанасов получил средства для создания машины, названной Atanasoff-Berry Computer (ABC). Она была спроектирована и собрана Атанасовым и аспирантом Клиффордом Берри в 1942 году. Однако устройство ABC не имело широкой известности до патентного спора, связанного с изобретением компьютера. Он был разрешен лишь в 1973 году, когда было доказано, что соавтор ENIAC Джон Мокли видел компьютер ABC вскоре после того, как тот стал функциональным.

Юридический результат судебных тяжб был знаковым: Атанасов был объявлен инициатором нескольких основных компьютерных идей, но компьютер как концепция был объявлен непатентоспособным и, следовательно, свободно открыт для всех разработчиков. Полномасштабная рабочая копия ABC была завершена в 1997 году, доказав, что машина ABC функционировала так, как утверждал Атанасов.

ENIAC

ENIAC

ENIAC разрабатывался двумя учеными из Пенсильванского университета — Джоном Эккертом и Джоном Мокли. Он мог решать «широкий спектр числовых задач» путем перепрограммирования. Хотя машина была предъявлена публике уже после войны, в 1946 году, она была важна для расчетов во время последующих конфликтов, таких как «Холодная война» и Корейская война. Она использовалась для вычислений при создании водородной бомбы, инженерных расчетов и создания таблиц стрельбы. А также делала прогнозы погоды в СССР, чтобы американцы знали, куда могут выпасть радиоактивные осадки в случае ядерной войны.

В отличие от «Марк 1» с его электромеханическими реле, в «ЭНИАКе» были вакуумные лампы. Считается, что ENIAC провел больше расчетов за свои десять лет эксплуатации, чем все человечество до этого времени.

EDSAC

EDSAC

Первый компьютер с хранимым в памяти программным обеспечением назывался EDSAC. Он был собран в 1949 году в Кембриджском университете. Проект по его созданию возглавлял профессор Кембриджа и директор Лаборатории вычислительных исследований Кембриджа Морис Уилкс.

Одним из основных достижений в программировании было использование Уилксом библиотеки коротких программ под названием «подпрограммы». Она хранилась на перфокартах и ​​использовалась для выполнения общих повторяющихся вычислений в рамках программы lager.

Как выглядел первый компьютер в мире

Американский «Марк 1» был огромен, занимая в длину свыше 17 метров, а в высоту — свыше 2.5 метра. Машина, в оболочке из стекла и нержавеющей стали, весила 4,5 тонны, а общая протяженность ее соединительных проводов чуть-чуть не дотягивала до 800 км. За синхронизацию основных вычислительных модулей отвечал пятнадцатиметровый вал, который приводил в движение электродвигатель мощностью 4 кВт.

Марк 1 в музее IBM

Еще тяжелее, чем «Марк 1», был «ЭНИАК». Он весил 27 тонн, и требовал 174 кВт электроэнергии. Когда его включали, городские огни тускнели. Машина не имела ни клавиатуры ни монитора, занимала площадь в 135 кв.м и была обвита километрами проводов. Чтобы получить представление о внешнем виде «ЭНИАКа» представьте себе длинный ряд металлических шкафов, которые сверху донизу заставлены лампочками. Поскольку качественного охлаждения у компьютера тогда еще не было, в помещении, где он находился, было очень жарко, и «ЭНИАК» давал сбои.

ENIAC

В СССР не желали отставать от Запада и вели свои разработки по созданию ЭВМ. Результатом усилий советских ученых стала (МЭСМ). Ее первый запуск состоялся в 1950 году. В МЭСМ использовались 6 тысяч ламп, она занимала площадь в 60 кв. м и требовала для работы мощности до 25 кВт.

МЭСМ

Устройство могло выполнять до 3 тысяч операций в секунду. МЭСМ применялась для сложных научных вычислений, затем ее использовали как учебное пособие, а в 1959 году машину разобрали.

В 1952 году у МЭСМ появилась старшая сестра — (БЭСМ). Количество электронных ламп в ней возросло до 5 тысяч, выросло и количество операций в секунду — от 8 до 10 тысяч.

БЭСМ

Первый в мире коммерческий компьютер

Представленный в США в 1951 году, можно назвать первым компьютером, предназначенным для коммерческого использования.

Он прославился после того, как использовал данные опроса 1% населения, имеющего право голоса, чтобы правильно предсказать, что генерал Дуайт Эйзенхауэр выиграет выборы 1952 года. Когда люди поняли возможности компьютерной обработки данных, многие предприятия начали приобретать эту машину для своих нужд.

Самый первый персональный компьютер в мире

Впервые термин «персональный компьютер» был применен к творению итальянского инженера Пьера Джорджио Перотто под названием Programma 101 . Выпустила его фирма Olivetti.

Programma 101

Стоило устройство 3200 долларов и разошлось тиражом около 44 000 экземпляров. Десять штук купило NASA, чтобы использовать для расчетов посадки Apollo 11 на Луну в 1969 году. Сеть ABC (American Broadcasting Company) использовала Programma 101 для прогнозирования президентских выборов 1968 года. Американские военные использовали его для планирования своих операций во время войны во Вьетнаме. Он также закупался для школ, больниц и правительственных учреждениях и отмечал начало эпохи быстрого развития и продаж ПК.

Первый домашний компьютер массового производства за рубежом

В 1975 году в одном из выпусков журнала « Популярная электроника» появилась статья о новом компьютерном наборе — Altair 8800. В течение нескольких недель после появления устройства клиенты наводнили его производителя, компанию MITS, заказами. Машина была оснащена 256-байтовой памятью (расширяемой до 64 Кб) и универсальной интерфейсной шиной, которая превратилась в стандарт «S-100», широко используемый в любительских и персональных компьютерах той эпохи.

«Альтаир 8800» можно было купить за 397 долларов. После покупки владельцу-радиолюбителю нужно было самостоятельно паять и проверять работоспособность собранных узлов. На этом трудности не заканчивались, предстояло еще освоить написание программ с помощью нулей и единиц. У Altair 8800 не было клавиатуры или монитора, жесткого диска и дисковода. Чтобы ввести нужную программу пользователь щелкал тумблерами на передней панели устройства. А проверка результатов осуществлялась путем наблюдения за лампочками, мигающими на передней панели.

А в 1976 году «на свет» появился первый компьютер Apple , разработанный и изготовленный вручную Стивом Возняком и рекламируемый его другом как первый продукт компании Apple Computer Company. Apple 1 считается первым ПК, поставляемым в готовом виде.

Apple 1

На самом деле у устройства не было ни монитора, ни клавиатуры (предусматривалась возможность их подключения). Зато была полностью укомплектованная монтажная плата, на которой находилось 30 микросхем. У «Альтаир 8800» и других поступивших на рынок устройств и этого не было, их надо было собирать из набора. Первоначально у Apple 1 была почти «адская» цена в 666, 66 долларов, однако год спустя она была снижена до 475 долларов. Позже была выпущена дополнительная плата, которая позволяла записывать данные на кассетный магнитофон. Она стоила 75 долларов.

Первый домашний компьютер массового производства в СССР

С 80-х годов XX века в Болгарии начали выпускать компьютер под названием «Правец». Это был клон второй версии Apple. Еще одним клоном, входящим в линейку «Правец», был «советский» IBM PC, базировавшийся на процессорах Intel 8088 и 8086. Более поздним клоном Oric Atmos была «домашняя» модель «Правец 8D» в небольшом корпусе и со встроенной клавиатурой. Она выпускалась с 1985 по 1992 годы. Компьютеры «Правец» стояли во многих школах Советского Союза.

Желающие собрать себе домашний компьютер могли воспользоваться инструкциями в журнале «Радио» 1982-83 гг. и воспроизвести модель под названием «Микро-80». Она базировалась на микропроцессоре КР580ВМ80, аналогичном Intel i8080.

В 1984 году в Советском Союзе появился компьютер «Агат», достаточно мощный по сравнению с западными моделями. Объем ОЗУ составлял 128 КБ, что вдвое превышало объем оперативной памяти у моделей Apple начала 80-х годов двадцатого века. Компьютер выпускался в нескольких модификациях, имел внешнюю клавиатуру с 74 клавишами и черно-белый либо цветной экран.

Производство «Агатов» шло до 1993 года.

Компьютеры современности

В наши дни современные компьютерные технологии меняются очень быстро. современности в миллиарды раз превосходят своих предков. Каждая компания хочет удивить и так пресыщенных пользователей, и до сих пор многие преуспевают в этом. Вот лишь некоторые из основных тем за последние годы:

  • Ноутбук, оказавший важное влияние на развитие индустрии: Apple Macbook (2006 год).
  • Смартфон, оказавший важное влияние на развитие индустрии: Apple iPhone (2007 год).
  • Планшет, оказавший важное влияние на развитие индустрии: Apple iPad (2010 год).
  • Первые «умные часы»: Pulsar Time Computer (1972 год). Их можно увидеть на руке Джеймса Бонда в боевике «Живи и дай умереть» 1973 года.

И, конечно же, различные игровые консоли: Playstation, Xbox, Nintendo и т. д.

Мы живем в интересное время (хотя это и звучит как китайское проклятие). И кто знает, что ждет в ближайшем будущем. Нейронные компьютеры? Квантовые компьютеры? Поживем-увидим.

Компьютеры сопровождают человека уже на протяжении многих десятилетий. В настоящее время в эксплуатации находится их 4-е поколение, хотя некоторые люди утверждают, что это уже 5-е поколение, поскольку системы перешли на архитектуру с многоядерными процессорами, но это суждение пока что оспаривается, и мы в этой статье будем придерживаться 4-х поколений.

Предком современного персонального компьютера является арифметическая машина Блеза Паскаля, с помощью которой тот еще в 1642 году производил простейшие операции, такие как сложение и вычитание. Называется она «Паскалево колесо» или «Паскалина» и относится учеными к нулевому поколению компьютеров. Ближе к концу XVII века другой ученый, Готфрид Вильгельм Лейбниц, создает свою вычислительную машину, которая может выполнять уже 4 действия: умножение и деление, вычитание и сложение.

Закончилось нулевое поколение вычислительных машин в XIX веке. Одним из последних экземпляров такой техники было устройство, изобретенное Чальзом Бэббиджем, которое выполняло вычисления, руководствуясь набором инструкций, содержащихся на перфокартах. Такие первые прообразы программ на перфокартах готовили первые программисты, среди которых были и женщины. Первооткрывателем этой профессии у представительниц слабого пола была Ада Ловлейс.

В конце XIX века в Америке появляется первая счетная машина, в которой применяется что-то похожее на клавиатуру. Изобретателями данного устройства, названного «Комптометр», были американцы Таррант и Фельт.

Приблизительно в тоже время Герман Холлерит для ускорения процесса обработки результатов по переписи населения США создает «статистический табулятор». В этой машине для расшифровки данных, нанесенных на перфокарты, использовалось электричество. Устройство получило широкое распространение, а ее создатель развил на основе табулятора фирму, которая через 36 лет преобразовалась во всем известную корпорацию IBM - мирового лидера компьютерной индустрии. К середине XX столетия технологические разработки IBM применяли большинство развитых стран мира.

С 1930-х годов на рынке появляются настольные механические калькуляторы производства фирм «Friden», «Monroe» и «Marchant», позволяющие своим пользователям осуществлять 4 основные арифметические операции. В этот период появляется термин «computer» (в переводе с англ. «вычислитель»). Так называли должность людей, осуществляющих вычисления с помощью калькуляторов.

Первая автоматическая механическая машина, для управления которой использовались программы, была создана немецким инженером Конрадом Цузе в 1938 году.

Второе поколение компьютеров появилось к середине XX века и отличалось от первого использованием ламповых технологий, которые позволили существенно повысить их быстродействие до 20 000 операций/секунду. Первый в истории электронно-цифровой компьютер появился в США в 1945 году. Он был создан двумя Джонами: Джоном Уильямом Мокли и Джоном Преспером Экертом. Друзьяназвалисвоетворение «ENIAC» (Electronic Numerical Integrator and Calculator).

Прошло всего несколько десятков лет, а компьютерная индустрия снова шагнула вперед. Это случилось после изобретения и освоения производства транзисторов. Их применение дало возможность производителям компьютеров снизить вес и габариты своих изделий, а также еще увеличить их скорость, которая стала достигать 1 млн. операций в секунду.

В 50-х годах компания IBM начинает выпуск первых магнитных дисков, предназначенных для хранения информации в цифровом формате, которые получили название RAMAC (Random Access Method of Accounting and Control).

В 1963 году был разработан алгоритмический язык программирования Бейсик. В дальнейшем на его основе было создано целое семейство высокоуровневых языков.

Третье поколение компьютеров выпускалось с 1965 по 1980 годы и отличалось использованием электронных схем, построенных на базе кремниевых кристаллов.

Студенты Полон Аллен и Билл Гейтс в 1975 году разработали интерпретатор языка Бейсик, применяемый на персональном компьютере «Альтаир». В дальнейшем они же создали компанию «Microsoft», которая и сегодня является ведущим производителем на рынке программных продуктов.

Такие составляющие элементы ПК, как «мышь», дискеты, компакт-диски появились в 80-х годах прошлого столетия.

Новый толчок в истории развития персональных компьютеров был дан созданием графической операционной системы Windows 95, которая поддерживала многозадачность и была унифицирована со многими устройствами одинаковой архитектуры. Кроме этого, данная система была первой, в которой применялась графика. В Windows 95 фирма Microsoft впервые использовала новый протокол Plug & Play, который позволял устройствам устанавливаться в систему в автоматическом режиме.

Четвертое поколение компьютеров появилось в конце 80-х годов и производится до настоящего времени. В связи с тем, что развитие техники удешевило производство персональных компьютеров, они стали доступными широкому кругу пользователей и получили огромное распространение в мире.

Глава 2. Основы организация и функционирования компьютеров

2.1. Классификация компьютеров

По мере совершенствования структур и технологий производства средств вычислительной техники появляются новые классы компьютеров, и различия для определенных моделей компьютеров постепенно изменяются. Используются разнообразные классификационные характеристики компьютерной техники:

· по поколениям;

· по архитектуре, структуре, по количеству процессоров компьютера;

· по быстродействию;

· по условиям эксплуатации;

· по назначению компьютеров и другим характеристикам.

Идея классифицировать компьютеры по поколениям определяется тем, что компьютерная техника за свою длительную историю развития проделала большой путь как с точки зрения используемой элементной базы (лампы, транзисторы, микросхемы, большие и сверхбольшие интегральные схемы), так и в смысле развития структурной организации, значительного расширения сфер применения.

В 1945 г. Американский ученый Джон фон Нейман сформулировал основы организации и функционирования современных компьютеров на основе принципа программного управления работой компьютера, в соответствии с которым программа и данные хранились в оперативной памяти компьютера.

В 1946 г. В США была разработана первая электронная цифровая ЭВМ "Эниак". Машина выполняла за одну секунду только 300 умножений и 5000 сложений.

В 1948 г. в американской фирме Bell Laboratories физики У. Шокли, У. Браттейн и Дж. Бардин создали транзистор, за что они были удостоены Нобелевской премии. Транзисторы оказали революционное влияние на развитие средств вычислительной техники, заменив электронные лампы и открыв путь к созданию микросхем.

В 1951 г. в СССР под руководством С.А. Лебедева была разработана первая в континентальной Европе ЭВМ, названная «МЭСМ» (Малая Электронная Счетная Машина). СССР вошел в лидирующие страны в области проектирования и разработки средств вычислительной техники, что позволило развивать такие важные области как ядерная энергетика и космос.

В 1952 г. в нашей стране был разработан компьютер БЭСМ-1 (Большая Электронная Счетная Машина), который являлся самым быстродействующим компьютером Европе и одним из лучших в мире.

В 1964 г. американская фирма IBM разработала новое семейство ЭВМ третьего поколения с использованием микросхем - IBM/360.



В 1967 г. В СССР была создана ЭВМ БЭСМ-6 с производительностью 1 млн.операций/сек. Это был один из самых быстродействующих компьютеров в мире в то время, за которым последовала разработка компьютера нового типа «Эльбрус»- ЭВМ производительностью 10 млн. операций/с.

В 1979 г. Американская фирма Intel разработала микропроцессор Intel 8088, который фирма IBM стала использовать для разработки и производства персональных компьютеров. В 1981 г. фирма IBM выпустила первый персональный компьютер IBM PC на базе данного микропроцессора.

В 1982 г. и последующие годы фирма Intel выпустила микропроцессоры Intel286 и Intel386, а затем и микропроцессор Intel 486, который

стал первым микропроцессором со встроенным математическим сопроцессором. Данный сопроцессор значительно повысил скорость обработку данных, он выполнял тригонометрические, экспоненциальные и другие математические функции вместо центрального процессора.

В 1993 г. Фирма Intel выпустила первый микропроцессор семейства Pentium, который позволил обрабатывать компьютерам атрибуты "реального мира" : аудио, видио информацию, фотоизображения и т.п. И в течении последующих лет и до настоящего времени данное семейство является основой для разработки последующих компьютеров.

Остановимся кратко на рассмотрении классификации компьютеров по поколениям, которая достаточно часто встречается в литературе.

К первому поколению обычно относят машины, созданные в 50-х годах, в них использовались электронные лампы. Опыт использования компьютеров первого поколения показал, что необходимо разрабатывать средства автоматизации программирования, создавать программные системы, упрощающие работу на компьютерах, повышать эффективность использования компьютерной техники. Все это потребовало существенных изменений структуры компьютеров.

Второе поколение ЭВМ - это машины, которые разрабатывались в 1955-65 годах. Для них характерным явилось использование транзисторов, оперативная память использовала магнитные элементы. Начали использоваться для программирования языки высокого уровня. Специальные программы, называемые трансляторами выполняют перевод программы с языка высокого уровня на машинный язык компьютера. Появляются мониторные системы, которые управляют процессом трансляции и выполнения программ. Мониторные системы явились основой для создания современных операционных систем. Некоторые компьютеры второго поколения использовали уже операционные системы с ограниченными возможностями.

Компьютеры третьего поколения появились в мировой практике в начале 60-x годов. Компьютеры третьего поколения уже представляли собой семейство ЭВМ с единой архитектурой, они имели программную совместимость. ЭВМ данного поколения имели эффективные операционные системы, они поддерживали мультипрограммный режим, позволяющий одновременно выполнять несколько программ. Примерами ЭВМ этого поколения являются IBM/360, IBM/370, а также разработанные в СССР ЕСЭВМ, СМЭВМ и многие другие. Быстродействие ЭВМ в рамках одного семейства значительно отличается.

Компьютеры четвёртого поколения - это ЭВМ, разработанные в конце 70-х годов. В принципиальном отношении эти компьютеры отличаются от машин третьего поколения использованием современных языков высокого уровня, упрощенным процессом разработки программного обеспечения. В данных компьютерах получило широкое использование микросхем, емкость оперативной памяти возросла до десятков мегабайт. ЭВМ четвертого поколения являлись многопроцессорными и многомашинными комплексами, использующие общую оперативную память, а также общий пул периферийных устройств. Данные ЭВМ поддерживали режим телекоммуникационной обработки информации, объединялись в компьютерные сети, использовали систем управления базами данных и другие инновации того времени.

В разработках ЭВМ последующих поколений широко используются большие и сверхбольшие интегральные схемы, получили распространение оптоэлектронные принципы. Компьютеры обеспечивают ввод информации с рукописного или печатного текста, аудио ввод, идентифицировать пользователя по голосу, выполнять перевод, происходит переход к обработке знаний и т.д.

По условиям эксплуатации компьютеры подразделяются на два основных типа:

· офисные (универсальные);

· промышленные (специализированные).

Офисные компьютеры используются для работы в нормальных условиях эксплуатации.

Промышленные компьютеры должны удовлетворять специальным требованиям эксплуатации, класс решаемых задач являются проблемно- ориентированными или специализированным.

2.2. Принципы построения персонального компьютера

Персональные компьютеры получили бурное развитие, начиная с 1980 годов. Любой компьютер представляет собой совокупность аппаратного и программного обеспечения. К аппаратному обеспечению компьютеров относятся устройства и схемы, образующие аппаратную конфигурацию, необходимую для выполнения задач, их можно собирать из готовых узлов и блоков, наращивать, они имеют открытую архитектуру. Многочисленные интерфейсы в архитектуре любой вычислительной системы, можно условно разделить на две большие группы: последовательные и параллельные. Через последовательный интерфейс данные передаются последовательно, бит за битом, а через параллельный - одновременно группами битов. Количество битов, участвующих в одной передаче, определяется разрядностью интерфейса, например, восьмиразрядные параллельные интерфейсы передают один байт (8 бит) за один такт. Параллельные интерфейсы обычно имеют более сложную организацию по сравнению с последовательными, но обеспечивают принципиально более высокую скорость передачи информации. Производительность параллельных интерфейсов измеряют байтами в секунду (байт/с; Кбайт/с; Мбайт/с).

Программы - это упорядоченные последовательности команд, обеспечивающие управление аппаратными средствами компьютера. Даже если, на первый взгляд, программа не взаимодействует с оборудованием, не требует ввода или вывода данных в периферийные устройства, все равно ее работа основана на управлении аппаратными устройствами компьютера на основе принципа программного управления.

Программное и аппаратное обеспечение в компьютере работают в непрерывном взаимодействии. Несмотря на то, что мы рассматриваем эти две категории отдельно, нельзя забывать, что между ними существует диалектическая связь, и раздельное их рассмотрение является, по меньшей мере, условным.

В основе структурной организации современных персональных компьютеров используется магистрально-модульный принцип, в соответствии с которым все модули компьютера объединяются в единую систему хранения, обработки и передачи информации (рис.2.1). Данный принцип позволяет пользователю определять необходимую конфигурацию компьютера, осуществлять при необходимости модернизацию (апгрейд) компьютера. Магистраль состоит из трех многоразрядных шин: шина данных, шина адреса и шина управления.

Шина данных . Данная шина используется для передачи данных между процессором и устройствами ПК, а также передаются команды в регистр команд процессора из оперативной памяти. Разрядность шины данных современных ПК составляет 64 бита.

Шина адреса . По шине адреса процессор передает адрес из процессора в адресуемый модуль памяти или периферийное устройство. Разрядность шины адреса определяет адресное пространство памяти, адресуемое процессором

Количество ячеек памяти, адресуемых при прямой адресации можно оценить по формуле: N = 2 R , где R - разрядность шины адреса.

Шина управления. По шине управления передаются сигналы управления, определяющие выполняемую операцию в адресуемом устройстве. Например, при чтении данных из памяти формируется сигнал чтения, а при записи – сигнал записи.

Рис.2.1. Структура персонального компьютера

2.3. Базовая конфигурация ПК

Персональный компьютер является универсальной системой обработки и хранения информации, конфигурацию которого можно гибко изменять в соответствии с классом решаемых задач. Такие компьютеры называют компьютерами с открытой архитектурой. В базовую конфигурацию ПК входят следующие модули:

· системный блок;

· монитор;

· клавиатура;

На рис.2.2 показаны основные модули базовой конфигурации и основные устройства системного блока.

2.3.1 Системный блок

Системный блок представляет собой основу компьютера, внутри которого установлены основные устройства. Устройства, подключаемые к системному блоку, называют внешними или периферийными, предназначенными для ввода, вывода и долговременного хранения информации.

Рис.2.2. Состав ПК и устройств системного блока

Основными устройствами системного блока (рис. 2.2) являются следующие:

· системная (материнская) плата-2;

· центральное процессорное устройство - 3;

· оперативная память - 4;

· платы расширений – 5;

· блок питания – 6;

· привод оптических дисков – 7;

· накопители на жестких дисках – 8;

2.3.2. Системная плата

Системная плата (systemboad), материнская плата(motherboard) или главная плата (mainboard) - это различные названия печатной платы с набором микросхем, на которой осуществляется монтаж большинства компонентов персонального компьютера посредством печатных проводников и различных разъёмов (слотов). На материнской плате также располагаются слоты для центрального процессорного устройства, графической и звуковой плат, жёстких дисков, оперативной памяти и других дополнительных компонент.

Материнская плата представляет собой многослойную печатную плату из диэлектрика, на которой электропроводящие проводники выполнены из фольги.

Также на плате находятся слоты и порты шин, например PCI Express (PCI-E), PCI, AGP(Accelerated Graphics Port), USB, контроллеров дисков SATA и IDE/ATA. Слотами называют разъемы для подключения внутренних плат, отдельные слоты предназначены для плат оперативной памяти. Разъемы крепления внешних компонентов называют портами, сейчас многие устройства подключаются через USB-порт. Пример системной платы приведен на рис 2.3.

Рис. 2.3. Системная плата

На системной плате размещаются следующие компоненты:

· процессор – основная микросхема, выполняющая обработку данных

· шины интерфейсы – системная магистраль, включающая шину данных, адреса и управляющих сигналов, по которым происходит передача данных и команд;

· оперативная память представляет набор микросхем, она используется оперативного хранения данных во время работы компьютера;

· постоянное запоминающее устройство – микросхема, предназначенная для долговременного хранения данных, в том числе и после выключения компьютера, в которой хранится BIOS;

· комплект чипсет – набор микросхем, который определяет характеристики материнской платы;

· набор разъемов (слотов) и портов - используется для подключения дополнительных внешних и внутренних устройств.

От производительности перечисленных компонентов в значительной степени зависит производительность компьютера и поэтому выбор системной платы является очень важной задачей при конфигурировании ПК.

Чипсет (Chip Set) . Это набор микросхем материнской платы, состоящий из двух основных микросхем:

· «Северный мост» (Northbridge) - обеспечивает взаимодействие ЦПУ с памятью и видеоадаптером. В новых чипсетах используется интегрированная видеокарта.

· «Южный мост» (Southbridge) - обеспечивает взаимодействие между ЦПУ и жестким диском, слотами PCI-Е, USB и другими.

Южный мост реализует взаимодействия на материнской плате между чипсетом материнской платы и её компонентами. Южный мост обычно не подключён напрямую к процессору в отличие от северного моста.

На системных платах для установки процессоров используется специальный разъем-сокет, который может быть квадратной формы с многочисленными отверстиями под выводы микросхемы. Однако можно встретить не только квадратный сокет, а и длинный разъем – слот.

Системная шина. Это компьютерная шина, которая передает данные, команды, управляющие сигналы и питание между компонентами компьютера. Каждая шина имеет свой набор соединителей (коннекторов) для физического подключения устройств, карт и кабелей. Современные компьютерные шины используют как параллельные, так и последовательные соединения.

Шины подразделяются на внутренние (local bus) и внешние (external bus). Первые используются для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначаются для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.

В последнее время используются такие шины как HyperTransport и Infiniband. Infiniband - это высокоскоростная коммутируемая последовательная шина, применяющаяся как для внутрисистемных, так и для межсистемных соединений. Данные шины позволяют обеспечивать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие скорости для работы с медленными устройствами, например, приводами дисков.

На производительность компьютера оказывают влияние следующие основные факторы:

· частота процессора - это частота, на которой работает центральный процессор, определяется исходя из частоты шины FSB (Front Side Bus - переводится как «системная шина») и коэффициента умножения. Большинство современных процессоров имеют заблокированный коэффициент умножения, так что единственным способом разгона процессора является изменение частоты FSB;

· память - до определённого момента в развитии компьютеров частота работы памяти совпадала с частотой FSB, на современных персональных компьютерах частоты FSB и шины памяти могут различаться.

· периферийные шины - в старых компьютерах частоты шин ISA, PCI, AGP задавались в соотношении с FSB, на новых компьютерах частоты для каждой шины задаются независимо.

Характеристики системной платы . Системная плата имеет следующие основные характеристики:

· форм - фактор платы - определяет форму, размер, расположение компонентов на плате и тип корпуса компьютера, в который можно ее поместить. Например, корпус типа ATX предоставляет дополнительные возможности: программное включение/выключение компьютера, более надежный разъем питания, лучшая вентиляция корпуса.

· количество и тип разъемов для плат расширения, для подключения которых (видеокарт, звуковых карт, внутренних модемов и др.) необходимо иметь на плате достаточное количество разъемов расширения соответствующего типа.

· набор микросхем - это одна или несколько микросхем, таймеры, системы управления, специально разработанные для "обвязки" процессора.

· наличие интегрированных возможностей - на некоторых материнских платах интегрируют дополнительные возможности, которые могут находится на платах расширения. При такой интеграции повышается надежность системы (меньшее количество контактов), плата стоит дешевле, но модернизировать такую плату дороже.

2.3.3. Центральное процессорное устройство

Центральное процессорное устройство (ЦПУ) является основной микросхемой компьютера, в которой выполняется обработка данных. Современные процессорные микросхемы помимо центрального процессора содержат также математический процессор, называемый сопроцессором. Начиная с процессора Intel486, сопроцессор, выполняющий операции с плавающей запятой, был интегрирован в процессорный чип и назван FPU (Floating Point Unit). Основными операциями, выполняемыми сопроцессором, являются: арифметические, сравнение, деление по модулю, квадратный корень, тригонометрические, загрузка констант, логарифмические и некоторые другие специальные операции.

В состав центрального процессора входят арифметико-логическое устройство для выполнения арифметических и логических операций, регистры процессора, образующие сверхоперативную память процессора для временного хранения данных. Кроме того, процессор содержит регистр команд, в котором хранится выполняемая команда, и программный счетчик для адресации команд программы, хранящейся в оперативной памяти компьютера. В процессорную микросхему также включают кэш-память, например двух уровней L1 и L2.

Команды также как и данные представлены в виде последовательности байтов и хранятся в оперативной памяти. Множество команд процессора образует систему команд процессора. Процессоры, относящиеся к одному семейству, имеют совместимые системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и являются несовместимыми.

Выполнение команд в процессоре сводится к следующим основным этапам:

· процессор выдает из программного счетчика адрес памяти для выборки команды из оперативной памяти;

· память, получив адрес и сигнал чтения, передает в регистр команд процессора код команды по шине данных;

· процессор расшифровывает полученную команду, выполняет ее, формирует адрес следующей команды и переходит к первому этапу.

Данный цикл выполняется периодически и называется циклом выборки и выполнения команд. Данную последовательность команд называют программой, разработанной в соответствии с алгоритмом решаемой задачи. Линейный порядок выборки команд из памяти может нарушаться при появлении команд условного перехода для выполнения разветвлений или организации программных циклов.

Характеристики процессоров. Основными характеристиками процессоров являются:

· Разрядность процессора - определяет количество бит данных, которое он может загрузить и обработать одновременно (параллельно). Современные процессоры, разрабатываемые фирмами Intel и AMD, являются 64-разрядными.

· Тактовая частота . В основе работы процессора положен тактовый принцип, в соответствии с которым для выполнения каждой команды требуется определенное количество тактов. В компьютере частоту тактовых импульсов, поступающих в процессор, задает генератор тактовых импульсов Чем выше частота тактовых импульсов, тем выше производительность компьютера. Современные процессоры могут работать на тактовых частотах примерно 4 ГГц.

· Кэш-память . Обмен данными внутри процессора происходит значительно быстрее, чем с оперативной памятью.

· Для уменьшения обращений оперативную память в процессор имеется буферная область памяти, называемая кэш-памятью. Процессор вначале выполняет обращение за данными в кэш-память и при их отсутствии происходит запрос в оперативную память. Получая данные из оперативной памяти, процессор загружает их и в кэш.

· Кэш-память может иметь несколько уровней. Кэш-память первого и второго уровней (L1,L2) размещается в том же кристалле, что и сам процессор и имеет объем от десятков Кбайт до нескольких мегабайт. Кэш-память третьего уровня реализуют на быстродействующих микросхемах памяти типа SRAM (статическая память с произвольным доступом) и размещают на материнской плате вблизи процессора. Емкость данной памяти составляет десятки Мбайт, работает она на частоте материнской платы.

· Напряжение питания процессора по мере развития микропроцессорной техники постепенно понижается. В настоящее время ядро процессора питается напряжением 2,2 В и 1,8 В. Такое напряжение позволяет уменьшить потребляемую мощность блока питания и является важной тенденцией в развитии микроэлектронных технологий. Кроме того, уменьшается и тепловыделение в процессоре, что позволяет увеличить его производительность и является одним из важных факторов надежной работы компьютера в целом.

· Компьютерный блок питания . Предназначен для питания узлов компьютера и обеспечивает для платформы ПК выходные напряжения +5В, +12В, −12В, +3,3В, −5В.

Мультиядерные процессоры. Эра одноядерных процессоров фирмы Intel завершается, на замену их приходят более современные процессоры с мультипроцессорной архитектурой, содержащие 2,4, 6 и более процессоров, часто называемых «ядрами». К росту быстродействия процессоров привыкли уже все пользователи, частоты достигли нескольких гигагерц и остро встала задача охлаждения кристаллов с возможным переходом на жидкостное охлаждение. Большой интерес вызывают разработки, основанные на новой архитектуре следующего поколения от основных разработчиков процессорных кристаллов фирм Intel и AMD. Рассмотрим кратко некоторые разработки многоядерных процессоров фирмы Intel.

Процессоры Core 2 Duo используют микро - архитектуру Core. На этот раз фирме Intel удалось выиграть гонку производительности и, что важнее, процессоры Core 2 Duo обеспечивают не только высокую скорость, но и отличаются прекрасным соотношением производительности на ватт потребляемой мощности. Все процессоры архитектуры Core 2 Duo работают с тактовой частотой системной шины FSB (Front Side Bus,) 266 МГц, в то время как большинство моделей Pentium 4 используют 200-МГц шину. Поскольку за такт передаётся учетверённое количество информации (QDR), то получается эквивалентная частота FSB 1066 МГц с пропускной способностью 8,5 Гбайт/с. За исключением процессоров начального уровня, все модели оснащены 4 Мбайт кэша L2, который используют оба процессорных ядра. Все процессоры поддерживают 64-битные расширения Intel (EM64T), мультимедийные и инструкции, технологию виртуализации. Кроме этих функций, все модели поддерживают последние технологии управления энергопотреблением. Основные характеристики некоторых двухъядерных процессоров Pentium D приведены в таблице:

В 2006 году корпорация Intel начала переход на четырехъядерные процессоры, которые обеспечивают новые возможности для реализации научных исследований, ведения бизнеса и развлечений. Основные характеристики четырехъядерных процессоров Intel Xeon приведены в таблице:

Фирма Intel выпускает процессоры Dunnington, объединяющие шесть ядер в одном корпусе. Данные процессоры имеют 16 Мб кэш-памяти третьего уровня, а также 9 Мб кэш-памяти второго уровня (по 3 Мб на каждую пару ядер).

2.3.4. Шинные интерфейсы и порты системной платы

Порты компьютера. Под портами понимаются разъемы на задней стенке компьютера, предназначенные для подключения таких внешних устройств, как принтер, сканер, внешние диски, флэшки, внешние модемы, мышки и другие периферийные устройства.

ISA. Интерфейс ISA (Industry Standard Architecture) являлся долгие годы промышленным стандартом, она все еще используется в промышленных компьютерах для подключения относительно медленных периферийных устройств.

PCI. Интерфейс PCI (Peripheral Component Interconnect – стандарт подключения внешних компонентов) появился в персональных компьютерах, реализованных на основе процессоров Pentium. Данный стандарт стал поддерживать режим «plug-and-play», который обеспечивает автоматическое распознавание подключаемых устройств «на лету».

FSB . PCI в настоящее время применяется только как шина для интерфейса с периферийными устройствами, а для сопряжения процессора с оперативной памятью, используют шина, которая получила название FSB (Front Side Bus).

PCMCIA (Personal Computer Memory Card International Association – стандарт международной ассоциации производителей плат памяти для персональных компьютеров). Данный стандарт используется для подключения «плоских» карт памяти, в портативных персональных компьютерах, его используют при изготовлении плат ввода-вывлда информации, модемов.

PCI Express. PCI Express или PCI-E - компьютерная шина, использует программную модель шины PCI. В отличие от шины PCI, используемой для передачи данных по общей шине, PCI-E является пакетной сетью с топологией типа звезда. Устройства на шине PCI-E взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором. Шина PCI Express поддерживает горячую замену карт, управление энергопотреблением и контроль передаваемых данных.

Официально первая базовая спецификация PCI Express появилась в 2002 году и ориентирована на использование в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только аппаратного уровня без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и PCI.

Hyper-Transport. Шина HyperTransport (HT) - это двунаправленная последовательно/параллельная компьютерная шина с высокой пропускной способностью и малыми задержками, она работает на частотах до 2,6 ГГц. HyperTransport поддерживает автоматическое определение ширины шины, от 2-х битных линий до 32-х битных линий. Полноразмерная, высокоскоростная 32-х битная шина в двунаправленном режиме способна обеспечить пропускную способность до 41600 МБ/с. Шина может быть использована как с устройствами с высокими требованиями к пропускной способности (оперативная память и ЦПУ), так и с устройствами с низкими требованиями (периферийные устройства).

USB (Universal Serial Bus) - универсальная последовательная шина, предназначенная для подключения периферийных устройств. Шина USB представляет собой последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств. Для высокоскоростных устройств лучше применять FireWire. USB - кабель представляет собой две витые пары: по одной паре происходит передача данных в каждом направлении, а другая пара используется для питания периферийного устройства (+5 В).

Первые компьютеры с портами USB (USB 1.1) появились в 1996 году, скорость обмена составляла 12Мбит/сек при длине кабеля 3-5 метров.

USB 2.0 отличается от USB 1.1 большей скоростью и небольшими изменениями в протоколе передачи данных для режима Hi-speed (до 480Мбит/сек).

USB OTG (On-The-Go) - дальнейшее развитие спецификации USB 2.0, предназначенное для лёгкого соединения периферийных USB-устройств без необходимости подключения к компьютеру. Например, цифровой фотоаппарат можно подключать к фотопринтеру напрямую, если они оба поддерживают стандарт USB OTG. Этот стандарт возник из-за возросшей в последнее время необходимости надёжного соединения различных USB-устройств без использования компьютера.

USB 3.0. Находится на этапе разработки и будет передавать сигналы посредством оптоволоконного кабеля. USB 3.0 будет совместима с USB 2.0 и USB 1.1, теоретическая пропускная способность 4,8 Гбит/с.

USB wireless. Эта технология стала доступной в 2005 году и позволяет организовать беспроводную связь с высокой скоростью передачи информации (до 480 Мбит/с на расстоянии 3 метра и до 110 Мбит/с на расстоянии 10 метров).

Wi-Fi . В последние годы широкую популярность приобрелибеспроводные технологии Wi-Fi (Wireless Fidelity – беспроводная достоверность). Это семейство технологий беспроводной передачи данных, максимальная производительность канала более 50 Мбод, а радиус действия около 100 метров, что достаточно для создания беспроводных локальных сетей. Точки доступа Wi-Fi создают в общественных местах: гостиницы, кафе, вокзалы и др. Находясь в зоне действия Wi-Fi , в Интернет можно выйти с помощью ноутбука или ПКП. Мобильные устройства (КПК, ноутбуки), оснащённые клиентскими Wi-Fi приёмо-передающими устройствами, могут подключаться к локальной сети и получать доступ в Интернет.

Wi-Max . Это еще одна интенсивно развивающаяся беспроводная технология, но в России она еще практически не распространена. Производительность канала – около 75Мбод, а дальность действия измеряется уже десятками километров. Это хорошая альтернатива выделенной линии для Интернета.

GPRS (General Packet Radio Service) – это cтандарт для передачи данных всотовыхсетях. Соединение с помощью мобильного телефона может принципиально заменить обычную телефонную линию. Но обычный голосовой модем сотового телефона обеспечивает скорость передачи данных со скоростью 9.6 Кбод, что недостаточно для работы в Интернете. Поэтому для мобильной связи была создана специальная технология пакетной передачи данных GPRS, позволяющая вести обмен со скоростью около 200Кбод. Эта величина пока теоретическая, на практике большинство операторов мобильной связи обеспечивает канал со скоростью 56Кбод.

Технология BlueTooth («блютуз»). Буквально переводится как «синий зуб» и это название исторически связано с датским королем 10 века Гаральдом «Синие зубы», который собирал скандинавские земли, а данная технология как раз и предназначена для объединения мобильной электроники. Данная технология считается пригодной для беспроводной передачи данных для мобильных устройств различного назначения: мобильные телефоны, портативные компьютеры, принтеры, цифровые фотоаппараты и т.п. Необходимость в низком энергопотреблении обусловила и небольшую дальность действия – до сотни метров. Разрабатывается вариант, способный передавать данные на инфракрасные порты на расстояние до 30-40 километров. По умолчанию устройства с данной технологией соединяются друг с другом автоматически, как только они оказываются в зоне обнаружения.

IEEE 1394 (FireWire) –высокоскоростная последовательная шина, используемая для передачи данных между персональным компьютером и различными периферийными устройствами: принтерами, сканерами, жёсткими дисками, цифровыми видеокамерами. Она позволяет подключать внешние устройства и конкурирует с USB.

2.3.5. Базовая система ввода-вывода

BIOS (basic input/output system) – представляет встроенный в компьютер набор базовых программ для загрузки операционной системы, проверки устройств компьютера во время запуска, а также для поддержки обмена данными между устройствами. Eсли при загрузке возникают отказы оборудования, то на экран выдается сообщение об ошибке.

Программы базовой системы ввода-вывода, как правило, остаются недоступными для пользователей. В настоящее время материнские платы включают Flash - BIOS и программа может быть перезагружена в микросхеме.

После выполнения диагностики компьютера BIOS выводит на монитор основные параметры аппаратных средств и после этого загружается операционная система. Пользователь может предварительно нажать Del и вызвать BIOS - Setup, которая позволяет изменить различные установки в CMOS RAM.

2.3.6. Энергонезависимая память

Системная плата содержит микросхему «энергонезависимой памяти», изготовления по технологии CMOS. В отличие от оперативной памяти содержимое CMOS не стирается после выключения компьютера. В нее можно записывать данные, а также их модифицировать согласно устройствам, входящим в состав компьютера. Данная схема использует для питания автономный аккумулятор, который находится на системной плате. CMOS хранит информацию о дисках, процессоре и других устройствах системной платы.

2.4. Система памяти компьютера

Система памяти компьютера используется для хранения информации в персональных компьютерах и включает следующие устройства:

· регистры ЦПУ, представляющие самую быстродействующую память ограниченного объема (8-16 регистров) и называемую сверхоперативной памятью компьютера;

· кэш-память;

· модули оперативной памяти;

· накопители на жестких магнитных дисках;

· оптические диски (CD и DVD диски);

· внешняя память (внешние диски, флэш-память).

Ниже будут более подробно рассмотрены вопросы организации, функционирования и основные характеристики устройств памяти.

2.4.1. Кэш-память

Кэш- память (cache - дословно «заначка») - память компьютера с быстрым доступом, в которой дублируется и хранится часть данных памяти с более медленным доступом, которой является оперативная память. Кэш-память позволяет обращаться к часто требуемым данным быстрее, чем это происходит при использовании только оперативной памяти. Процесс организации доступа посредством кэш-памяти называется кэшированием.

Кэш-память в персональных компьютерах обычно разделяется на несколько уровней: L1, L2, L3, причем память младшего уровня всегда меньше по размеру и имеет более высокую скорость доступа. Самой быстрой памятью является кэш-память первого уровня (L1-cache) и она размещается на одном с ним кристалле. Память уровня L1 работает на частоте процессора и объём этой памяти обычно небольшой - примерно 128 Кб. L2 - кэш второго уровня, которая обычно расположена также на кристалле или рядом с ЦПУ, объём L2 доходит до 4 Мб. Кэш-память третьего уровня наименее быстродействующая и обычно расположена вне ЦПУ, она может иметь значительную емкость и работать быстрее оперативной памяти.

2.4.2. Оперативная память

Оперативная память предназначена для временного хранения данных и команд, при отключении питания компьютера вся информация из памяти стирается. Поэтому при работе с документами нужно периодически сохранять данные на диск, так как при случайной перезагрузке, зависании системы или скачке напряжения оперативная память очистится и все данные будут потеряны. Из оперативной памяти команды и данные передаются в процессор напрямую или через кэш-память. В компьютерах оперативная память является динамической памятью с произвольным доступом (dynamic random access memory - DRAM).

Понятие «динамической» памяти DRAM относится ко всем типам оперативной памяти, начиная с самой старой асинхронной динамической памяти и заканчивая современными модулями памяти DDR2, DDR3. Этот термин вводится в противоположность понятию «статической» памяти (SRAM) и означает, что содержимое каждой ячейки памяти периодически необходимо обновлять ввиду особенности ее конструкции, продиктованной экономическими соображениями. В то же время, статическая память, характеризующаяся более сложной и дорогой конструкцией ячейки и применяемая в качестве кэш-памяти в процессорах, свободна от циклов регенерации, так как в ее основе лежит не емкость (динамический элемент), а триггер (статический элемент).Оперативная память является памятью с произвольным доступом RAM (Random Access Memory), это означает, что при обращении к данным порядок их расположения в памяти может быть произвольным. Оперативная память состоит из ячеек определенной разрядности.

Под емкостью или объемом модуля памяти понимают максимальный объем информации, которую данный модуль может хранить. Емкость памяти обычно измеряется в байтах, а учитывая емкость современных модулей памяти - в Мегабайтах или Гигабайтах, (например 512 Мб, 1Гб). Наиболее приоритетным направлением развития технологии оперативной памяти в настоящее время является DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory - удвоенная скорость передачи данных синхронной памяти с произвольным доступом). Данная память обеспечивает:

· дальнейшее увеличение ее пропускной способности и снижение задержек;

· уменьшение энергопотребления;

· увеличение емкости отдельных микросхем и модулей памяти в целом.

Реализация данного направления является очень важной, так как происходит постоянное развитие технологии изготовления модулей памяти.

2.4.3. Накопители на жестких магнитных дисках

Накопители на жестких магнитных дисках (HDD - Hard Disk Driver) являются энергонезависимыми, перезаписываемыми запоминающими устройствами для долговременного хранения больших объемов информации. В жестких дисках информация хранится на вращающейся металлической или стеклянной пластине, покрытой магнитным материалом. В первых накопителях на жестких магнитных дисках (НЖМД) использовалась одна пластина, а современные диски имеют несколько пластин, размещенных на одной оси или шпинделе.

Информация записывается на обеих сторонах диска. Когда диск вращается, магнитная головка считывает или записывает двоичные данные на магнитный носитель. Магнитные головки записи - чтения информации в рабочем режиме не касаются поверхности пластин, и расстояние между ними не более нескольких нанометров, что обеспечивает долгий срок службы устройства. Накопитель на жёстком магнитном диске состоит из следующих основных узлов: корпуса из прочного сплава, жестких магнитных дисков (пластин) с магнитным покрытием, магнитных головок, электропривода шпинделя и контроллера, управляющего работой жесткого диска и представляющего собой микросхему. Контроллер диска определяет используемый метод записи данных на диске. Жесткий диск устанавливается в специальные монтажные отсеки внутри системного блока и подключается к материнской плате плоским контактным кабелем. На рис 2.4 представлен накопитель на жестких дисках.

Данные на магнитных дисках хранятся на концентрических круговых участках, называемых дорожками (tracks), которых на жестком диске размером 3,5 дюйма может быть более тысячи. Дорожки представляют собой скорее логическую, чем физическую структуру и наносятся при низкоуровневом форматировании жесткого диска. Нумерация дорожек начинается с 0, которая является ближайшей к внешнему краю диска. Дорожка с самым высоким номером находится ближе всех к шпинделю. На рис.2.5 показаны нулевая дорожка, дорожка в середине жесткого диска (N) и дорожка номер 1023.

Головки чтения-записи представляют собой миниатюрные преобразователи, которые позиционируются над дорожкой диска с помощью шагового двигателя. На каждую сторону пластины диска имеется по одной головке. Как правило, все головки закреплены на едином механизме перемещения головок, и все они перемещаются синхронно. Все головки всегда располагаются над одной и той же логической дорожкой на каждой стороне каждой пластины. Головки перемещаются над поверхностью диска небольшими приращениями, которые называются шагами (steps), каждый шаг соответствует одной дорожке.

Рис. 2.4. Накопитель на жестких магнитных дисках

Рис. 2.5. Расположение дорожек на диске

Некоторые диски имеют по одной головке на каждую дорожку и, следовательно, контроллеры не тратят время на перемещение головок к нужной дорожке для считывания информации. Эти диски существенно дороже и, как правило, устанавливаются только на суперкомпьютерах.

В настоящее время разработаны твердые диски, не имеющие ни пластин, ни головок, вместо которых используется энергонезависимая память (NVRAM). Микрокод контроллера организует память, имитируя логические цилиндры, головки, дорожки и секторы, обеспечивая интерфейс с операционной сис­темой. Время доступа к таким дискам измеряется наносекундами (для сравнения - при использовании традиционных технологий оно измеряется в миллисекундах).

Секторы и кластеры. Каждая дорожка разбивается на фрагменты, называемые секторами (sectors), причем все дорожки на диске имеют одинаковое количество секторов. Сектор представляет собой минимальную физическую единицу хранения информации на диске. Размер сектора почти всегда равен 512 байт. Каждая дорожка имеет одно и то же количество секторов, поэтому на дорожках, расположенных ближе к центру диска, секторы упакованы гораздо плотнее.

Дляподготовки диска к работе необходимо на нем создать разделы и логические диски, а также выполнить форматирование диска, то есть разметить его. При этом уничтожается вся информация на жёстком диске. Под разделом диска понимается часть физического диска, которая ведет себя как отдельное устройство и для хранения данных на созданном разделе необходимо сначала отформатировать его и присвоить имя диску. Диск можно разбить на несколько разделов, например на основной и дополнительные, а в разделах можно создать, в свою очередь, логические диски, каждый из которых будет иметь собственное имя. Логические диски похожи на основные разделы за тем исключением, что на одном диске может быть не более четырех основных разделов, в то время как число логических дисков не ограничено, их можно форматировать и присваивать имена.

Разбиение диска на дорожки и сектора выполняется производителем диска. Сектор емкостью 512 байт представляет минимальный физический объем диска. При логическом разбиении диска на нем создаются более крупные фрагменты, состоящие от одного до нескольких секторов и называемые кластерами. Количество секторов в кластере зависит от используемой файловой системы и емкости диска. Ниже приведена таблица размеров кластеров для файловой системы NTFS (файловые системы обсуждаются в главе 3). В этой системе обычно форматируют жесткий диск при установке операционной системы, например при установке операционной системы Windows.

Основными характеристиками НЖМД являются следующие:

· интерфейс - существует огромное количество разных моделей жестких дисков многих фирм, для обеспечения совместимости дисков разработаны стандарты на их интерфейсы, определяющие номенклатуру соединительных проводников, их размещение в переходных разъемах, электрические параметры сигналов и т.п. Распространенными являются интерфейсы IDE (Integrated Drive Electronics) или ATA (Advanced Technology Attachment), Serial ATA, SCSI (Small Computer System Interface), EIDE (Enhanced IDE). Характеристики интерфейсов, с помощью которых винчестеры связаны с материнской платой, в значительной степени определяют производительность современных жестких дисков;

· емкость диска – максимальное количество данных, хранимых накопителем, емкость современных дисков достигает до 1000 Гб (1Тбайт). Обычно оптимальный объём определяется минимальной стоимостью одного гигабайта данных. Для её определения необходимо ёмкость HDD разделить на цену. На рис. 2.6. представлена зависимость стоимости хранения одного гигабайта для наиболее распространенных НЖМД до 500 Гбайт;

Рис. 2.6. Стоимость хранения гигабайта информации на диске

За основу бралась стоимость моделей с SATA-интерфейсом и буфером от 8 Мбайт. Цены на НЖМД от разных производителей суммировались, определялось среднее значение, которое и делилось на ёмкость диска. Наиболее выгодным по стоимости за один гигабайт оказались модели ёмкостью 250 Гбайт. С небольшим отрывом за ними следуют НЖМД ёмкостью 200 Гбайт и 300 Гбайт, именно на них и следует обратить внимание пользователям;

· физический размер (форм-фактор) - большинство современных накопителей персональных компьютеров и серверов имеют размер 3,5, или 2,5 дюйма, применяются в основном в ноутбуках. Другими популярными форматами являются диски 1,8 дюйма, 1,3 дюйма и 0,85 дюйма;

· время произвольного доступа (random access time) – среднее время доступа составляет от 3 до 15 мс, как правило, минимальным временем обладают серверные диски;

· скорость вращения шпинделя (spindle speed) – диски имеют различные стандартные скорости вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (ПК), 10 000 и 15 000 об./мин. (серверы и высокопроизводительные рабочие станции);

· потребляемая энергия - важный показатель для мобильных устройств;

· уровень шума - определяется шумом, порождаемым работой механических частей накопителя. Данный параметр определяется в децибелах. Бесшумными накопителями являются накопители с уровнем шума менее 25 дБ;

· скорость передачи данных (Transfer Rate) – средняя скорость лежит в диапазоне (45-500) Мбайт/с.

2.4.4. Накопители на оптических дисках

Под оптическими дисками понимают носители информации, выполненные в виде дисков, запись на которые выполняется с помощью оптического излучения. Диск изготовлен из поликарбоната толщиной 1,2 мм, на который нанесен специальный слой, служащий для хранения информации. При чтении данных луч лазера отражается к читающей лазерной головке по разному для «0» и «1», посредством которых и передается информация. Диаметр дисков может быть 12см или 8см (210 Мбайт).

Первые компакт-диски были созданы для хранения аудио информации в 1979 году компаниями Philips и Sony, однако в настоящее время широко используются как устройства хранения данных широкого назначения. CD-ROM (Compact Disc Read Only Memory) означает компакт-диск с возможностью только чтения. Для штамповки существует специальная матрица (мастер-диск) будущего диска, которая выдавливает дорожки на поверхности и после штамповки на поверхность диска наносят защитную пленку из прозрачного лака. Накопитель CD-ROM содержит:

· электродвигатель, который вращает диск;

· оптическую систему, состоящую из лазерного излучателя, оптических линз и датчиков и предназначенную для считывания информации с поверхности диска;

· микропроцессор, который руководит механикой привода, оптической системой и декодирует прочитанную информацию в двоичный код.

Компакт-диск раскручивается электродвигателем. На поверхность диска с помощью привода оптической системы фокусируется луч из лазерного излучателя. Луч отражается от поверхности диска и сквозь призму подается на датчик. Световой поток превращается в электрический сигнал, который поступает в микропроцессор, где он анализируется и превращается в двоичный код.

DVD – диски. Официально DVD диск был объявлен в 1995 году и вначале под данной аббревиатурой понимался Digital Video Disk (цифровой видео диск), а затем данное сокращение стало соответствовать названию Digital Versatile Disk (Versatile – универсальный). DVD имеет более высокую плотность записи за счет использования лазера с меньшей длинной волны. Кроме того, DVD могут быть двухслойными, это позволяет записывать данные на одной стороне диска в два слоя. Данные могут записываться также на две стороны диска, что обеспечивает удвоение ёмкости.

HD DVD (High Definition DVD) - это DVD высокой чёткости, использующие такие же диски стандартного размера (12см) и синий лазер с длиной волны 405 нанометров. Однослойный HD DVD имеет ёмкость 15 GB, двухслойный - 30 GB. Фирма Toshiba также анонсировала трёхслойный диск, который будет хранить 45 GB данных. Это меньше, чем ёмкость основного конкурента Blu-ray, который поддерживает 25 GB на один слой и 100 GB на четыре слоя. Оба формата совместимы с DVD и используют одни и те же методики сжатия видео.

BD DVD (Blu-RayDisc) - это стандарт DVD дисков - Blu-Ray Disc (Голубой луч) следующего поколения. Запись и чтение данных выполняется "сине-фиолетовым" лазером длиной волны 0,4 мкм. Это обеспечивает возможность размещать на одной стороне диска 27 Гбайт, а для двухслойного диска – порядка 50 Гбайт информации. Blu-ray Disc, сокращённо BD - это следующее поколение оптических дисков с высокой плотностью.

2.5. Периферийные устройства

Периферийными или внешними устройствами называют устройства, размещенные вне системного блока и используемые для обмена информацией с компьютером. К ним относятся устройства вывода результатов (мониторы, принтеры, плоттеры и другие) и устройства ввода данных (клавиатура, сканеры и т.п.).

2.5.1. Монитор

Это стандартное устройство вывода, предназначенное для визуального отображения текстовой и графической информации. В зависимости от принципа действия, мониторы подразделяются на:

· мониторы на основе электронно-лучевой трубки (ЭЛТ или CRT- Cathod Ray Tube);

· жидкокристаллические мониторы.

Монитор с электронно-лучевой трубкой представляет собой электронно-вакуумное устройство в виде стеклянной колбы, в горловине которой находится электронная трубка с экраном со слоем люминофора. При нагревании электронная пушка излучает поток электронов, которые с высокой скоростью двигаются к экрану. Изображение на мониторе формируется при помощи электронного луча, очень быстро проходящего последовательно по строкам слева- направо, сверху- вниз. Если бы луч проходил всю область экрана очень медленно, то мы бы увидели точку, последовательно проходящую по всей области экрана. Но, так как луч проходит весь экран с очень большой скоростью, мы видим изображение с небольшим мерцанием. Чем быстрее луч проходит по экрану, тем менее заметно мерцание картинки. Считается, что мерцание картинки будет незаметно, если луч полностью пройдет экран 75 раз за секунду (то есть с частотой 75Гц). Естественно, чем больше этот параметр, тем лучше для глаз пользователя и рекомендуемая величина - это 85Гц и выше.

При выборе монитора следует учитывать и разрешающую способность экрана (разрешение). Как правило, производитель указывает в паспорте к монитору максимальное разрешение (например макс. - 2048x1536, 60 Гц) и оптимальное (например оптим. - 1280x1024, 85 Гц).

Следующий критерий выбора - размер экрана по диагонали в дюймах. Основными стандартными размерами экрана являются 15"; 17",19"; 20"; 21", 22”,24”.

Если вы собираетесь работать только с текстовой информацией и простой графикой, вам вполне подойдет монитор 17"", 1024x768, 85Гц. Для игр следует брать монитор с наиболее большим разрешением экрана и частотой, а для профессиональной работы с видео и графикой рекомендуется монитор с диагональю экрана не менее 19"". Достоинствами мониторов на основе ЭЛТ являются:

· отличный обзор экрана под любым углом;

· достаточно точная цветопередача;

· идеально подходит для отображения видео и анимации.

К недостаткам мониторов данного типа можно отнести:

· занимают много места на рабочем столе;

· всегда присутствует электромагнитное излучение;

· мерцание вредно для глаз, чувствуется усталость после нескольких часов работы.

Монитор этого типа подойдет, если вы занимаетесь профессиональной работой с графикой и видео, в других случаях рекомендуется обратить внимание на ЖК-мониторы.

Жидкокристаллические мониторы (ЖК или LCD - Liquid Crystal Display ) – пассивные плоские мониторы, данный тип мониторов был разработан в 1963 году. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в мониторе. В основе мониторов этого типа лежит вещество, находящееся в жидком состоянии (жидкие кристаллы), благодаря которому и формируется изображение. Экран ЖК-монитора представляет собой массив пикселей из жидких кристаллов (матрица), которые используются для отображения информации. У ЖК-мониторов нет мерцаний, дефектов сведения, помех от магнитных полей, идеальны фокусировка, геометрия изображения и фиксированное разрешение. Энергопотребление ЖК-мониторов в несколько раз меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров Энергопотребление ЖК мониторов на 95% определяется мощностью ламп подсветки или светодиодной матрицы подсветки пассивного ЖК экрана. При выборе ЖК монитора следует обратить внимание на следующие основные характеристики:

· яркость - е диницей измерения яркости является «кандела» (лат. candela- свеча) на квадратный метр (кд/м 2). В некоторых документах применяется единица измерения яркости - нит, который равен 1 кд/м 2 , стандартная яркость равна 300 кд/м 2 ;

· контрастность - определяется отношением самой яркой и самой темной точки экрана. Данная величина является безразмерной и обозначается, например так: 1600:1;

· угол обзора - он бывает как горизонтальный, так и вертикальный. Горизонтальный угол обзора позволяет вам видеть изображение на мониторе (если вам позволит угол самого обзора), если вы сидите не напротив монитора, а чуть сбоку (справа или слева – вот самые крайние боковые точки и формирует данный угол – стандартный горизонтальный угол равен 160 градусам). Вертикальный угол обзора – это угол между верхней точкой перед монитором и нижней (стандартный угол составляет 60 градусов, но чем больше, тем лучше). В отличие от ЭЛТ-мониторов, в которых картинка видима под любым углом обзора, кристаллическое содержание не позволяет ЖК-мониторам похвастать этим. Наибольший угол обзора для ЖК на сегодняшний день составляет 178 градусов и по горизонтали и по вертикали;

· максимальное разрешение - от этого показателя зависит плотность или, так сказать, наибольшая детализация изображения. Стандартное разрешение составляет 1280:1024, но чем больше, тем качественнее изображение, например хорошее качество соответствует разрешение - 1920х1200;

· частота и время отклика - время отклика характеризует суммарное время переключения пиксела LCD-матрицы из черного в светлое состояние и обратно;

· потребление энергии - важный показатель при выборе монитора, потребление эпергии примерно от 30 Вт, а в режиме экономии монитор потребляет 1-2 Вт.

ЖК-мониторы имеют не только вышеперечисленные характеристики, некоторые модели имеют возможность поворота экрана на разные углы, как по горизонтали и вертикали, так и в других плоскостях. При выборе ЖК монитора следует попросить показать тест поверхности монитора на "битые пиксели" - точки на экране, которые при прохождении через них светового луча утратили свою способность изменять цвет. Дело в том, что наличие до 5 "битых пикселей" не является гарантийной ситуацией, а это значит, что никто такой монитор вам заменять не будет. Так же следует обратить внимание на "смазывание" текста при прокрутке станицы с текстовой информацией. Если текст при прокрутке оставляет за собой на некоторый момент "шлейф", приобретать такой монитор не стоит. Достоинствами ЖК мониторов являются:

· низкая потребляемая мощность электроэнергии;

· возможность поворота экрана;

· занимают достаточно мало места;

· достаточно безопасны для зрения;

· идеально подходят для работы с текстовой информацией и простой графикой, а так же для игр.

Рынок ЖК-мониторов движется все больше в сторону широкого формата. Выход Windows Vista еще больше подстегивает этот процесс. Интерфейс Vista «настроен» под формат экрана 16:10, соответственно, и большинство новинок будет теперь выходить с таким соотношением сторон. Параметры продолжают улучшаться: у новинок выросла контрастность до 3000:1. Любители игр, как обычно, не обделены вниманием: время отклика 5 мс уже никого не удивляет, в семействе моделей основных производителей имеются разработанные специально для «геймеров» двухмиллисекундные мониторы. Для профессиональной работы с графикой имеются мониторы, например NEC LCD2690WUXi с экраном 26 дюймов по диагонали.

2.5.2. Видеоплата

Видеоплата, известная также под названием графическая карта, видеокарта или видеоадаптер, является частью видиосистемы компьютера и выполняет преобразование изображения, хранящегося в памяти компьютера, в видеосигнал монитора. Видеокарта представляет собой плату расширения, встраиваемую в специальный разъём для видеокарт на материнской плате или бывает встроенной в материнскую плату микросхемой. Современные видеокарты имеют специализированный микропроцессор, выполняющий большую часть обработки изображений, освобождая от этих задач центральный процессор компьютера.

Стандартная видеоплата плата включает:

· графический процессор (Graphic Processor Unit) - является основой графической платы и в значительной степени определяет ее быстродействие. Поэтому используется понятие «графический ускоритель» (graphics accelerator), который обеспечивает выполнение определенных графических функций аппаратными средствами. Графический процессор выполняет обработку выводимого изображения, производит обработку команд трёхмерной графики. Графические процессоры являются достаточно сложными устройствами, соответствующими центральному процессору. Архитектура современного графического процессора обычно предполагает наличие блоков обработки 2D- и 3D-графики;

· видеопамять - выполняет роль буферной памяти, в которой хранится изображение, формируемое и обрабатываемое графическим процессором и выводимое на экран монитора. Основное назначение видеопамяти - временное хранение выводимой на экран монитора информации. Каждая картинка имеет определенный объём, который измеряется в байтах, поэтому больший объем видиопамяти обеспечивает лучшее разрешение, а также глубину цвета изображения. Часть видеопамяти, используемая для хранения выводимого изображения, называют кадровым буфером (фрейм- буфером). Например, если разрешение 1024х768 точек, то на экране будет 786 432 точек и при использовании 32-битного цвета для кодирования одной точки потребуется: (1024х768х32)/8 = 3145728 байт, то есть нужно более 3 Мбайт памяти. Таким образом, емкость буфера кадра видеопамяти в байтах можно в общем случае определить следующим образом: М=(r*c*b)/8, где:

М – емкость буфера памяти видеоплаты;

r - количество точек (пикселов) по горизонтали экрана;

с - количество точек (пикселов) по вертикали экрана;

b – количество бит для кодирования цвета;

8 – количество бит в байте.

· цифро-аналоговый преобразователь (ЦАП) используется для формирования изображений, формируемых специальным видеоконтроллером. Он формирует изображение в видеопамяти и вырабатывает сигналы развёртки монитора.

Основными характеристиками видеоадаптера являются следующие:

· разрядность шины данных, то есть количество бит информации, передаваемых за один такт и определяемых производительность видеоадаптера;

· производительность видеопамяти, от нее зависит, как быстро видеопроцессор будет получать данные для обработки. Большинство современных видеокарт сегодня имеют быстрые видеопроцессоры;

· емкость видеопамяти на плате;

· частота работы видеокарты, определяющая скорость обработки видеоинформации и измеряемая в мегагерцах;

· тип используемого интерфейса, в качестве которого сейчас применяется PCI Express, являющийся последовательным интерфейсом, его пропускная способность может достигать 8 Гб/с. В настоящее время имеет место практически полный отказ от шины AGP (Accelerated Graphics Port - ускоренный графический порт) в пользу PCI Express.

Поделитесь с друзьями или сохраните для себя:

Загрузка...