Основным промышленным способом получения кислорода является. Промышленное получение кислорода

Неисчерпаемым источником кислорода являтся воздух. Чтобы получить из него кислород, следует отделить этот газ от азота и других газов. На такой идее основан промышленный метод получения кислорода. Его реализуют, используя специальную, достаточно громоздкую аппаратуру. Сначала воздух сильно охлаждают до превращения его в жидкость. Затем температуру сжиженного воздуха постепенно повышают. Первым из него начинает выделяться газ азот (температура кипения жидкого азота составляет -196 °С), а жидкость обогащается кислородом.

Получение кислорода в лаборатории . Лабораторные методы получения кислорода основаны на химических реакциях.

Дж. Пристли получал этот газ из соединения, название которого - меркурий(II) оксид. Ученый использовал стеклянную линзу, с помощью которой фокусировал на веществе солнечный свет.

В современном исполнении этот опыт изображен на рисунке 54. При нагревании меркурий(||) оксид (порошок желтого цвета) превращается в ртуть и кислород. Ртуть выделяется в газообразном состоянии и конденсируется на стенках пробирки в виде серебристых капель. Кислород собирается над водой во второй пробирке.

Сейчас метод Пристли не используют, поскольку пары ртути токсичны. Кислород получают с помощью других реакций, подобных рассмотренной. Они, как правило, происходят при нагревании.

Реакции, при которых из одного вещества образуются несколько других, называют реакциями разложения.

Для получения кислорода в лаборатории используют такие оксигенсодержащие соединения:

Калий перманганат KMnO4 (бытовое название марганцовка; вещество является распространенным дезинфицирующим средством)

Калий хлорат KClO3 (тривиальное название - бертолетова соль, в честь французского химика конца XVIII - начала XIX в. К.-Л. Бертолле)

Небольшое количество катализатора - манган (IV) оксида MnO2 - добавляют к калий хлорату для того, чтобы разложение соединения происходило с выделением кислорода1.

Строение молекул гидридов халькогенов Н2Э можно проанализировать с помощью метода молекулярных орбиталей (МО). В качестве примера рассмотрим схему молекулярных орбиталей молекулы воды (рис.3)

Для построения (Подробнее см. Г. Грей "Электроны и химическая связь",М., изд-во "Мир", 1967, с.155-62 и G. L.Miessier, D. A.Tarr, "Inorganic Chemistry", Prantice Hall Int. Inc., 1991, p.153-57) схемы МО молекулы Н2О совместим начало координат с атомом кислорода, а атомы водорода расположим в плоскости xz (рис.3). Перекрывание 2s- и 2p-АО кислорода с 1s-АО водорода показано на рис.4. В формировании МО принимают участие АО водорода и кислорода, обладающие одинаковой симметрией и близкими энергиями. Однако вклад АО в образование МО разный, что отражается в разных величинах коэффициентов в соответствующих линейных комбинациях АО. Взаимодействие (перекрывание) 1s-АО водорода, 2s - и 2рz-АО кислорода приводит к образованию 2a1-связывающей и 4a1-разрыхляющей МО.

История открытия кислорода Открытие кислорода ознаменовало новый период в развитии химии. С глубокой древности было известно, что для горения необходим воздух. Процесс горения веществ долгое время оставался непонятным. В эпоху алхимии широкое распространение получила теория флогистона, согласно которой вещества горят благодаря их взаимодействию с огненной материей, то есть с флогистоном, который содержится в пламени. Кислород был получен английским химиком Джозефом Пристли в 70-х годах XVIII века. Химик нагревал красный порошок оксида ртути (II), в итоге вещество разлагалось, с образованием металлической ртути и бесцветного газа:

2HgO t° → 2Hg + O2

Оксиды – бинарные соединения, в состав которых входит кислород При внесении тлеющей лучины в сосуд с газом она ярко вспыхивала. Ученый считал, что тлеющая лучина вносит в газ флогистон, и он загорается. Д. Пристли пробовал дышать полученным газом, и был восхищен тем, как легко и свободно им дышится. Тогда ученый и не предполагал, что удовольствие дышать этим газом предоставлено каждому. Результатами своих опытов Д. Пристли поделился с французским химиком Антуаном Лораном Лавуазье. Имея хорошо оснащенную на то время лабораторию, А. Лавуазье повторил и усовершенствовал опыты Д. Пристли. А. Лавуазье измерил количество газа, выделяющееся при разложении определенной массы оксида ртути. Затем химик нагрел в герметичном сосуде металлическую ртуть до тех пор, пока она не превратилась в оксид ртути (II). Он обнаружил, что количество выделившегося газа в первом опыте равно газу, поглотившемуся во втором опыте. Следовательно, ртуть реагирует с каким-то веществом, содержащимся в воздухе. И это же вещество выделяется при разложении оксида. Лавуазье первым сделал вывод, что флогистон здесь совершенно ни при чем, и горение тлеющей лучины вызывает именно неизвестный газ, который в последствии был назван кислородом. Открытие кислорода ознаменовало крах теории флогистона!

Способы получения и собирания кислорода в лаборатории

Лабораторные способы получения кислорода весьма разнообразны. Существует много веществ, из которых можно получить кислород. Рассмотрим наиболее распространенные способы.

1) Разложение оксида ртути (II)

Одним из способов получения кислорода в лаборатории, является его получение по описанной выше реакции разложения оксида ртути (II). Ввиду высокой токсичности соединений ртути и паров самой ртути, данный способ используется крайне редко.

2) Разложение перманганата калия

Перманганат калия (в быту мы называем его марганцовкой) – кристаллическое вещество темно-фиолетового цвета. При нагревании перманганата калия выделяется кислород. В пробирку насыплем немного порошка перманганата калия и закрепим ее горизонтально в лапке штатива. Недалеко от отверстия пробирки поместим кусочек ваты. Закроем пробирку пробкой, в которую вставлена газоотводная трубка, конец которой опустим в сосуд- приемник. Газоотводная трубка должна доходить до дна сосуда-приемника. Ватка, находящаяся около отверстия пробирки нужна, чтобы предотвратить попадание частиц перманганата калия в сосуд-приемник (при разложении выделяющийся кислород увлекает за собой частички перманганата). Когда прибор собран, начинаем нагревание пробирки. Начинается выделение кислорода. Уравнение реакции разложения перманганата калия:

2KMnO4 t° → K2MnO4 + MnO2 + O2

Как обнаружить присутствие кислорода? Воспользуемся способом Пристли. Подожжем деревянную лучину, дадим ей немного погореть, затем погасим, так, чтобы она едва тлела. Опустим тлеющую лучину в сосуд с кислородом. Лучина ярко вспыхивает! Газоотводная трубка была не случайно опущена до дна сосуда-приемника. Кислород тяжелее воздуха, следовательно, он будет собираться в нижней части приемника, вытесняя из него воздух. Кислород можно собрать и методом вытеснения воды. Для этого газоотводную трубку необходимо опустить в пробирку, заполненную водой, и опущенную в кристаллизатор с водой вниз отверстием. При поступлении кислорода газ вытесняет воду из пробирки.

Разложение пероксида водорода

Пероксид водорода – вещество всем известное. В аптеке оно продается под названием «перекись водорода». Данное название является устаревшим, более правильно использовать термин «пероксид». Химическая формула пероксида водорода Н2О2 Пероксид водорода при хранении медленно разлагается на воду и кислород. Чтобы ускорить процесс разложения можно произвести нагрев или применить катализатор.

Катализатор – вещество, ускоряющее скорость протекания химической реакции

Нальем в колбу пероксид водорода, внесем в жидкость катализатор. Катализатором может служить порошок черного цвета – оксид марганца MnO2. Тотчас смесь начнет вспениваться вследствие выделения большого количества кислорода. Внесем в колбу тлеющую лучину – она ярко вспыхивает. Уравнение реакции разложения пероксида водорода:

2H2O2 MnO2 → 2H2O + O2

Обратите внимание: катализатор, ускоряющий протекание реакции, записывается над стрелкой, или знаком «=», потому что он не расходуется в ходе реакции, а только ускоряет ее.

Разложение хлората калия

Хлорат калия – кристаллическое вещество белого цвета. Используется в производстве фейерверков и других различных пиротехнических изделий. Встречается тривиальное название этого вещества – «бертолетова соль». Такое название вещество получило в честь французского химика, впервые синтезировавшего его, – Клода Луи Бертолле. Химическая формула хлората калия KСlO3. При нагревании хлората калия в присутствии катализатора – оксида марганца MnO2 , бертолетова соль разлагается по следующей схеме:

2KClO3 t°, MnO2 → 2KCl + 3O2.

Разложение нитратов

Нитраты – вещества, содержащие в своем составе ионы NO3⎺. Соединения данного класса используются в качестве минеральных удобрений, входят в состав пиротехнических изделий. Нитраты – соединения термически нестойкие, и при нагревании разлагаются с выделением кислорода: Обратите внимание, что все рассмотренные способы получения кислорода схожи. Во всех случаях кислород выделяется при разложении более сложных веществ. Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые В общем виде реакцию разложения можно описать буквенной схемой:

АВ → А + В.

Реакции разложения могут протекать при действии различных факторов. Это может быть нагревание, действие электрического тока, применение катализатора. Существуют реакции, в которых вещества разлагаются самопроизвольно.

Получение кислорода в промышленности

В промышленности кислород получают путем выделения его из воздуха. Воздух – смесь газов, основные компоненты которой представлены в таблице. Сущность этого способа заключается в глубоком охлаждении воздуха с превращением его в жидкость, что при нормальном атмосферном давлении может быть достигнуто при температуре около -192°С . Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Ткип. О2 = -183°С; Ткип.N2 = -196°С (при нормальном атмосферном давлении). При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения, и, по мере его выделения, жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией жидкого воздуха.
  • В лаборатории кислород получают реакциями разложения
  • Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые
  • Кислород можно собрать методом вытеснения воздуха или методом вытеснения воды
  • Для обнаружения кислорода используют тлеющую лучину, она ярко вспыхивает в нем
  • Катализатор – вещество, ускоряющее химическую реакцию, но не расходующееся в ней
]]>

При и резке металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в смеси с технически чистым кислородом.

Кислород является самым распространенным элементом на земле , встречающимся в виде химических соединений с различными веществами: в земле - до 50% по массе, в соединении с водородом в воде - около 86% по массе и в воздухе - до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 0,1 МПа) - это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальном атмосферном давлении и температуре 0°С масса 1 м 3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении - 1,33 кг.

Кислород имеет высокую химическую активность , образуя соединения со всеми химическими элементами, кроме (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества теплоты, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда. Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами.

Всю кислородную аппаратуру, кислородопроводы и баллоны необходимо тщательно обезжиривать. способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры.

Отмеченные особенности кислорода следует всегда иметь в виду при использовании его в процессах газопламенной обработки.

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем их объемном содержании: азота - 78,08%, кислорода - 20,95%, аргона-0,94%, остальное - углекислый газ, закись азота и др. Кислород получают разделением воздуха на кислород и методом глубокого охлаждения (сжижения), попутно идет отделение аргона, применение которого при непрерывно возрастает. Азот применяют как защитный газ при сварке меди.

Кислород можно получать химическим способом или электролизом воды. Химические способы малопроизводительны и неэкономичны. При электролизе воды постоянным током кислород получают как побочный продукт при производстве чистого водорода.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации. В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа и охлаждают в теплообменниках до температуры сжижения, разница в температурах сжижения кислорода и азота составляет 13°С, что достаточно для их полного разделения в жидкой фазе.

Жидкий чистый кислород накапливается в воздухоразделительном аппарате, испаряется и собирается в газгольдере, откуда компрессором его накачивают в баллоны под давлением до 20 МПа.

Технический кислород транспортируют также по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту кислород доставляется в кислородных баллонах, и в жидком виде - в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм 3 жидкого кислорода при испарении дает 860 дм 3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

Для сварки и резки по -78 технический кислород выпускается трех сортов:

  • 1-й - чистотой не менее 99,7%
  • 2-й - не менее 99,5%
  • 3-й - не менее 99,2% по объему

Чистота кислорода имеет большое значение для кислородной резки. Чем меньше содержится в нем газовых примесей, тем выше скорость реза, чище и меньше расход кислорода.

Кислоро́д (O 2) - химически активный газ без цвета, вкуса и запаха.

Проще всего получить кислород из воздуха, поскольку воздух - не соединение, и разделить воздух на элементы не так уж трудно.

Основным промышленным способом получения кислорода из воздуха является криогенная ректификация, когда жидкий воздух разделяют на компоненты в ректификационных колоннах так же, как делят, например, нефть. Но чтобы превратить атмосферный воздух в жидкость, его нужно охладить до минус 196°С. Для этого последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух обязан охлаждаться. Машины, в которых это происходит, называют детандерами. Современные криогенные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода.

Также успешно применяются в промышленности воздухоразделительные установки на основе мембранной или адсорбционной технологии.

Применение кислорода в промышленности и медицине

Отрасль

Применение кислорода

Металлургическая промышленность

  • Производство стали из чугуна (удаление избытка углерода из чугуна).
  • Конвертерный способ производства стали.
  • Электросталеплавильное производство.
  • Кислородное дутье в доменных и мартеновских печах, конверторах.
  • Производство ферросплавов.
  • Выплавка никеля, цинка, свинца, циркония и других цветных металлов.
  • Интенсификация процессов обжига сырья в цветной металлургии.
  • Прямое восстановление железа.
  • Переработка штейнов.

Химическая промышленность

  • Кислород как реактив-окислитель при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, перекисей металлов и др. химических продуктов.
  • Производство ацетилена (термоокислительный крекинг).

Нефтехимическая промышленность

  • Кислород применяется для более эффективной работы НПЗ - для увеличения производительности установок по крекингу нефти.

Энергетика

  • Газификация твердого топлива.
  • Сжатие твердо-угольной смеси.
  • Обогащение кислородом воздуха для промышленных котлов.

Строительство и машиностроение

  • Кислородо-ацетиленовая газорезка и газосварка металлов и сплавов.
  • Плазменный раскрой металлов и пайка.
  • Напыление и наплавка металлов.

Золотодобыча

  • Добыча драгоценных металлов из руд.
  • Термическое бурение твердых пород.
  • Аффинаж золота.

Нефтедобыча

  • Закачка кислорода в пласт для увеличения энергии вытеснения.
  • Создание эффективно перемещающегося внутри пласта очага горения.

Стекольная промышленность

  • Кислород позволяет повысить температуру в стекловаренных печах и улучшить процесс горения, уменьшить выбросы окислов азота и твердых частиц из печей.
  • При производстве стеклоизделий кислород подается на газовые горелки, которые используются для отрезания некондиционной части изделия, оплавления кромок и огневой полировки поверхности для оплавления микродефектов.
  • Кислород необходим при выдувке стекла, на фабриках медицинского и лабораторного стекла, при производстве электрических лампочек.

Экология

Кислород применяется в процессах:

  • Для повышения эффективности работы озонаторных установок - озонирование для водоподготовки, очистки сточных вод, отбеливания целлюлозы и т. д.
  • Утилизация отходов- при обезвреживании (окислении) химически активных отходов в очистных установках в мусоросжигательных печах с кислородным дутьём.
  • При очистке питьевой воды.
  • При вторичной переработке металлов.

Сельское хозяйство

Пищевая промышленность

  • В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948.
  • Кислород как пропеллент и упаковочный газ.

Озонаторные установки

  • Озонирование для водоподготовки, очистки сточных вод, отбеливания целлюлозы и т. д.

Медицина

  • Обогащение кислородом дыхательных газовых смесей.
  • Кислородные коктейли.
  • Анестезия (наркоз).
  • Физтотерапия.
  • Озонирование для дезинфекции.

Кислород является одним из наиболее применяемых человечеством газов, он широко используется практически во всех областях нашей жизнедеятельности. Металлургия, химическая промышленность, медицина, народное хозяйство, авиация – вот лишь краткий перечень сфер, где без этого вещества не обойтись.

Получение кислорода осуществляется в соответствии с двумя технологиями: лабораторной и промышленной. Первые методики производства бесцветного газа базируются на химических реакциях. Кислород получают в результате разложения перманганата калия, бертолетовой соли или перекиси водорода в присутствии катализатора. Однако лабораторные методики не могут полностью удовлетворить потребности в этом уникальном химическом элементе.

Второй способ получения кислорода заключается в криогенной ректификации либо с использование адсорбционной или мембранной технологий. Первая методика обеспечивает высокую чистоту продуктов разделения, но имеет более длительный (по сравнению со вторыми методами) пусковой период.

Адсорбционные кислородные установки зарекомендовали себя одними из лучших среди высокопроизводительных систем по изготовлению обогащенного кислородом воздуха. Они дают возможность получать бесцветный газ чистотой до 95% (до 99 % с применением дополнительной ступени очистки). Их использование оправдано в экономическом плане, особенно в ситуациях, когда нет необходимости в кислороде высокой чистоты, за который пришлось бы переплачивать.

Основные характеристики криогенных систем

Вас интересует производство кислорода с чистотой до 99,9 %? Тогда обратите внимание на установки, работающие на основе криогенной технологии. Достоинства систем для производства кислорода высокой чистоты:

  • длительный ресурс работы установки;
  • высокая производительность;
  • возможность получать кислород чистотой от 95 до 99,9 %.

Но из-за больших габаритов криогенных систем, невозможности быстрого запуска и остановки и др. факторов использование криогенного оборудования далеко не всегда является целесообразным.

Принцип действия адсорбционных установок

Схему работы кислородных систем с использованием адсорбционной технологии можно представить следующим образом:

  • сжатый воздух движется в ресивер, в систему воздухоподготовки для избавления от механических примесей и фильтрации от капельной влаги;
  • очищенный воздух направляется в адсорбционный воздухоразделительный блок, в состав которого входят адсорберы с адсорбентом;
  • во время работы адсорберы находятся в двух состояниях - поглощения и регенерации; на стадии поглощения кислород поступает в кислородный ресивер, а азот на стадии генерации отводится в атмосферу; после чего кислород направляется потребителю;
  • в случае необходимости давление газа может быть увеличено с помощью дожимного кислородного компрессора с последующей заправкой в баллоны.

Адсорбционные комплексы отличаются высоким уровнем надежности, полной автоматизацией, простотой в обслуживании, небольшими габаритами и весом.

Достоинства газоразделительных систем

Установки и станции с применением адсорбционной технологии для получения кислорода широко используются в самых разных сферах: при сварке и резке металлов, в строительстве, рыборазведении, выращивании мидий, креветок и т. д.

Преимущества газоразделительных систем:

  • возможность автоматизации процесса получения кислорода;
  • отсутствие особых требований к помещению;
  • быстрый запуск и остановка;
  • высокая надежность;
  • низкая себестоимость получаемого кислорода.

Выгодные стороны адсорбционных установок НПК «Грасис»

Вас интересует производство кислорода используемым в промышленности способом? Вы хотели бы получать кислород при минимальных финансовых затратах? Научно-производственная компания «Грасис» поможет решить вашу задачу на самом высоком уровне. Мы предлагаем надежные и эффективные системы для получения кислорода из воздуха. Вот основные отличительные черты производимой нами продукции:

  • полная автоматизация;
  • продуманные до мелочей конструкции;
  • современные системы контроля и управления.

Кислород, вырабатываемый нашими воздухоразделительными адсорбционными установками, имеет чистоту до 95 % (с опцией доочистки до 99%). Газ с такими характеристиками широко используется в металлургии при сварке и резке металлов, в народном хозяйстве. В производимом нами оборудовании применяются современные технологии, которые обеспечивают уникальные возможности в сфере газоразделения.

Особенности наших адсорбционных кислородных установок:

  • высокая надежность;
  • низкая себестоимость получаемого кислорода;
  • инновационная высокоинтеллектуальная система контроля и управления;
  • простота технического обслуживания;
  • возможность производить кислород чистотой до 95 % (с опцией доочистки до 99%);
  • производительность составляет до 6000 м³/ч.

Адсорбционные кислородные установки НПК «Грасис» – уникальное сочетание мирового конструкторского опыта производства газоразделительного оборудования и отечественных инновационных технологий.

Главные причины сотрудничества с НПК «Грасис»

Промышленный способ получения кислорода с применением установок, работающих на основе адсорбционной технологии, – один из наиболее перспективных на сегодняшний день. Он позволяет получать бесцветный газ с минимальными энергетическими затратами нужной чистоты. Вещество с данными параметрами востребовано в металлургии, машиностроении, химической отрасли, медицине.

Способ криогенной ректификации – оптимальное решение при необходимости производства кислорода высокой чистоты (до 99,9 %).

Ведущая отечественная компания «Грасис» предлагает высокоэффективные системы для производства кислорода по адсорбционной технологии на выгодных условиях. Мы обладаем большим опытом в реализации разнообразных проектов «под ключ», поэтому не боимся даже самых сложных задач.

Преимущества работы с ответственным поставщиком оборудования НПК «Грасис»:

  • наша компания является непосредственным производителем, поэтому стоимость реализуемых установок не увеличивают дополнительные комиссии посредников;
  • высокое качество продукции;
  • полный спектр сервисных услуг по ремонту и техническому обслуживанию установок по производству кислорода;
  • индивидуальный подход к каждому клиенту;
  • многолетний опыт работы в сфере производства кислорода.

Звоните нашим менеджерам для уточнения нюансов сотрудничества.

Более подробно Вы можете ознакомиться с кислородным оборудованием (кислородные генераторы, кислородные установки, кислородные станции) на странице

Поделитесь с друзьями или сохраните для себя:

Загрузка...