Обмен веществ и превращение в клетке. Обмен веществ и превращение энергии в клетке методическая разработка на тему

Рост, развитие, умственная и физическая деятельность возможны благодаря обмену веществ и энергии в клетке. Преобразование веществ в энергию является главным условием живых организмов, начиная одноклеточными растениями и заканчивая человеком.

Анаболизм и катаболизм

Обмен веществ или метаболизм - совокупность сложных химических реакций, происходящих в каждой клетке живого организма. Основное свойство обмена веществ и энергии - обеспечение взаимодействия внешней среды с организмом для поддержания жизни и нормального функционирования тканей и органов. Все жизненно необходимые вещества (вода, кислород, органические соединения) поступают из внешней среды. Без их доступа обмен веществ нарушается или прекращается, что приводит к гибели живого организма.

Метаболизм включает два тесно взаимосвязанных противоположных процесса:

  • катаболизм или диссимиляция;
  • анаболизм или ассимиляция.

Катаболизм или энергетический обмен - процесс распада сложных веществ (сахаров, жиров) на более простые. В результате образуется энергия в виде молекулы АТФ (аденозинтрифосфорная кислота или аденозинтрифосфат), которая является универсальным источником энергии. Часть образованных молекул АТФ участвует в синтезе различных веществ, часть - рассеивается в виде тепла.

Рис. 1. Формула АТФ.

Примеры катаболизма:

ТОП-4 статьи которые читают вместе с этой

  • расщепление этанола;
  • гликолиз - превращение глюкозы в кислоту, а затем - в воду и углекислый газ;
  • внутриклеточное дыхание (окисление).

Анаболизм или пластический обмен включает сложные химические реакции, в результате которых образуются высокомолекулярные вещества, необходимые для постройки и обновления организма (белки, жиры, углеводы). Для проведения таких реакций нужна энергия, т.е. анаболизм происходит с участием АТФ.

Анаболизм можно наблюдать в виде:

  • роста волос и ногтей;
  • образование мышц;
  • заживление ран, срастание костей и т.д.

Фотосинтез является анаболизмом, но вместо АТФ используется энергия солнечных лучей.

Рис. 2. Процесс фотосинтеза в клетке.

В результате катаболизма (распада) образуются простые вещества, которые могут соединяться при анаболизме (постройке) и вновь разрушаться при катаболизме с высвобождением АТФ. Хорошим примером являются жиры, которые образуются при ассимиляции, откладываются в тканях и расщепляются для получения энергии. Соотношение образованной и потраченной энергии называется энергетическим балансом. Анаболизм и катаболизм должны происходить параллельно без преобладания одного из процессов.

Этапы

Прежде чем пища превратится в энергию, она должна пройти долгий путь по желудочно-кишечному тракту, попасть в кровь и достигнуть каждой клетки, где начнётся метаболизм. Весь процесс делится на три стадии, которые описаны в таблице.

Этапы

Где происходит

Результат

Подготовительный

Желудочно-кишечный тракт

Вещества, поступившие с пищей, расщепляются на молекулы и всасываются в кровь. Белки расщепляются до аминокислот, углеводы - до глюкозы, жиры - до жирных кислот и глицерина. Происходит незначительное выделение энергии

Основной

Органеллы (функциональные структуры) клеток

Химические реакции анаболизма и катаболизма. Происходит образование АТФ и синтез специфичных для определённых тканей белков, обмен жиров и углеводов

Заключительный

Образование и выведение конечных продуктов распада - воды и углекислого газа. Выведение происходит через почки, кишечник, лёгкие, потовые железы

Рис. 3. Схема обмена веществ.

На протяжении всего метаболизма задействованы катализаторы - ферменты, которые ускоряют синтез или распад. Ферменты действуют избирательно: каждый вид участвует в строго определённых реакциях. Например, амилаза помогает расщепить крахмал в ротовой полости.

Регуляцию обмена веществ осуществляет гипоталамус, где находятся центры теплообмена, ощущений голода, жажды, насыщения. Нейроны гипоталамуса реагируют на уровень глюкозы, изменение давления, температуры и т.д. В соответствии с полученной информацией гипоталамус корректирует метаболизм.

Что мы узнали?

Кратко узнали об основных стадиях и этапах метаболизма, взаимодействии и примерах катаболизма и анаболизма, о значении ферментов для метаболизма и центре контроля всех внутриклеточных процессов.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 140.

ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ)

Постоянный обмен веществ с окружающей средой – одно из основных свойств живых систем.

Процесс синтеза ассимиляцией или пластическим обменом (анаболизм).

Процесс расщепления органических веществ называется диссимиляцией (катаболизм).

Пластический и энергетический обмен неразрывно связаны: все реакции синтеза нуждаются в энергии, а все реакции расщепления протекают при помощи ферментов, катализирующих эти реакции. Ферменты образуются в результате синтеза (ассимиляции).

Через пластический и энергетический обмен образуется связь с внешней средой: из внешней среды в клетку поступают питательные вещества, служащие материалом для реакций энергетического обмена; во внешнюю среду выделяются вещества, которые не могут быть использованы клеткой (H 2 O, СО 2 и др.).

Совокупность реакций энергетического и пластического обменов, в процессе которых осуществляется связь клетки с внешней средой, называется обменом веществ и энергии.

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН (ДИССИМИЛЯЦИЯ)

В этом процессе органические вещества, богатые энергией, распадаются на низкомолекулярные органические или неорганические соединения, бедные энергией. Реакции сопровождаются освобождением энергии, часть которой запасается в форме АТФ.

Энергетический обмен осуществляется в 3 этапа:

I . Подготовительный этап

Протекает в желудочно-кишечном тракте. На этом этапе сложные органические вещества расщепляются на более простые: белки до аминокислот, нуклеиновые кислоты до нуклеотидов, углеводы на моносахариды, жиры до жирных кислот и глицерина, освобождаемая при этом энергия рассеивается в виде тепла.

II этап – анаэробный (гликолиз) – бескислородное окисление

Протекает в цитоплазме клеток. Образованные на I этапе вещества подвергаются расщеплению с освобождением энергии – неполное окисление.

Процесс называют бескислородным или анаэробным, т.к. идет без поглощения кислорода. Главным источником энергии в клетке является глюкоза (С 6 Н 12 О 6 ).

Бескислородное расщепление глюкозы – гликолиз:

С 6 Н 12 О 6 + 2НАД +2АДФ + 2Ф 2С 3 Н 4 О 3 + 2НАДН 2 + 2АТФ

глюкоза ПВК (Атомы Н накапливаются при
помощи акцептора НАД+, а позже
соединяются с О 2 Н 2 О)

В результате неполного окисления 1 молекулы глюкозы образуется 2 молекулы АТФ.

Виды брожения

В условиях, когда О 2 нет и, значит, водородные атомы, освободившиеся в процессе гликолиза, не могут быть ему переданы, вместо О 2 должен быть использован другой акцептор водорода. Таким акцептором становиться пировиноградная кислота (ПВК). В зависимости от метаболических путей организма, конечные продукты различны:

Молочнокислое : 2С 3 Н 4 О 3 + 2НАД·Н 2 2С 3 Н 6 О 3 (молочная к-та) + 2НАД

Спиртовое : 2С 3 Н 4 О 3 + 2НАД·Н 2 2С 2 Н 5 ОН (этиловый спирт) + СО 2 + НАД

Маслянокислое : 2 С 3 Н 4 О 3 + 2НАД·Н 2 С 4 Н 8 О 2 (масляная к-та) + 2СО 2 + 2Н 2 + НАД

III этап – аэробный – полное окисление (клеточное дыхание)

Протекает в митохондриях. Это аэробный процесс, т.е. протекающий с обязательным присутствием кислорода. Образовавшаяся в процессе гликолиза пировиноградная кислота (ПВК): С 3 Н 4 О 3 подвергается дальнейшему окислению в митохондриях до Н 2 О и СО 2 и освобождается большое количество энергии:

2С 3 Н 4 О 3 + 6О 2 + 36АДФ + 36 Н 3 РО 4 42Н 2 О + 6СО 2 + (36АТФ)

Таким образом, всего на втором и третьем этапе выделяется 38АТФ:

С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н 2 О + 38АТФ.

Клеточное дыхание включает три группы реакций:

Образование ацетилкофермента А;

Цикл трикарбоновых кислот или цикл лимонной кислоты (цикл Кребса);

Перенос электронов по дыхательной цепи и окислительное фосфорилирование.

Первый и второй этапы протекают в матриксе митохондрий, а третья – на внутренней мембране митохондрий.

1. Образование ацетилкофермента А:

Пировиноградная кислота поступает из цитоплазмы в митохондрии, где претерпевает окислительное декарбоксилирование, заключающееся в отщеплении одной молекулы углекислого газа (СO 2) образование ацетильной группы пирувата (СН 3 СО–), которая присоединяется к коферменту А (КоА) образование ацетил-КоА.

2. Цикл Кребса

В цикле Кребса происходит последовательное окисление ацетил-КоА в составе лимонной кислоты, что сопровождается отщеплением углекислого газа и водорода, который собирается в НАДH 2 и передается в цепь транспорта электронов, встроенную во внутреннюю мембрану митохондрий, т.е. в результате полного оборота цикла Кребса одна молекула ацетил-КоА сгорает до СО 2 и Н 2 О.

Конечные продукты цикла Кребса и пути их использования:

    СО 2 выдыхается с воздухом;

    НАДН и ФАДН 2 поставляют водород в дыхательную цепь;

АТФ используется на различные виды работы

3. Перенос электронов по дыхательной цепи и окислительное фосфорилирование

Дыхательная цепь (цепь переноса электронов) – это цепь окислительно-восстановительных реакций, в ходе работы которой компоненты дыхательной цепи катализируют перенос протонов (Н+) и электронов (е-) от НАД∙H 2 и ФАД∙H 2 на их конечный акцептор – кислород, в результате чего образуется Н 2 О
(электроны переносятся по дыхательной цепи на молекулу О 2 и активируют её. Активированный кислород сразу же реагирует с образовавшимися протонами (Н+), в результате чего выделяется вода.

Окислительное фосфорилирование – это синтез АТФ из АДФ и фосфата с помощью встроенного во внутреннюю мембрану митохондрий фермента АТФ-синтетазы. В этом процессе используется энергия движения электронов и протонов в митохондриальной мембране.

ПЛАСТИЧЕСКИЙ ОБМЕН

Процесс ассимиляции – это процесс образования сложных органических веществ из более простых . К пластическому обмену относится биосинтез белков, нуклеиновых кислот, жиров, углеводов и фотосинтез.

Различают два типа ассимиляции: гетеротрофную и автотрофную.

Гетеротрофная ассимиляция имеет место в клетках животных организмов, грибов и большинства бактерий, которые для синтеза собственных веществ используют готовые органические соединения. например, на синтез белков в клетках животных идут аминокислоты, поступающие в организм с пищей, на синтез нуклеиновых кислот – нуклеотиды, содержащиеся в пище и т. д.

Автотрофные организмы синтезируют сложные органические вещества из неорганических (СО 2 и Н 2 О) посредством фотосинтеза и хемосинтеза .

Фотосинтез

Синтез органических соединений из неорганических (СО 2 и Н 2 О), протекающий за счет световой энергии.

Побочным продуктом фотосинтеза является О 2 , выделяющийся в атмосферу.

Фотосинтез протекает в хлоропластах при участии хлорофилла. В фотосинтезе выделяют 2 фазы: световую и темновую.

I . Световая фаза : протекает в тилакоидах хлоропластов только на свету. Под действием света хлорофмлл приходит в «возбужденное» состояние, под влиянием квантов света из атомов магния «выбиваются» е - (электроны) и приобретают скорость «убегания», т.е. покидают свои орбиты, отрываясь от молекулы хлорофилла.

Вода в хлоропластах находится частично в диссоциированном состоянии:

Н 2 О Н + + ОН -

Один из электронов соединен с ионом водорода (Н + ) из воды. Водород при этом восстанавливается до атома до атома: 2Н 0 + НАДФ = НАДФ∙H 2 .

Ион гидроксида (ОН -), оставшийся без противоиона, немедленно отдает свой электрон молекулам хлорофилла, утратившим свои е - , и превращаются в свободной радикал – ОН 0: ОН - - е - = ОН 0 .

Свободные радикалы гидроксида при этом взаимодействуют друг с другом:

4ОН 2Н 2 О + О 2 .

Следовательно, световая фаза характеризуется реакцией: Н 2 О О 2 + 4Н. Помимо образования О 2 и Н, главным моментом световой фазы является синтез АТФ.

У растений АТФ образуется и в митохондриях, и в хлоропластах.

II . Темновая фаза: протекает в строме хлоропластов как на свету, так и в темноте. Из СО 2 атмосферы и атомов водорода, образовавшихся в световую фазу, а также при участии АТФ, образовавшейся в световую фазу, образуется сложное органическое вещество – глюкоза : 6СО 2 + 24Н 2 С 6 Н 12 О 6 + 6Н 2 О,

В результате фотосинтеза имеем: 6СО 2 + 6Н 2 О С 6 Н 12 О 6 + 6О 2

Таким образом, световая энергия солнца преобразовалась в химическую энергию глюкозы.

ХЕМОСИНТЕЗ

Хемосинтез, как и фотосинтез, характеризуется синтезом органических веществ из неорганических, но в этом процессе используется не энергия света, а энергия химических связей, химическая энергия и кислород в окружающую среду не выделяется.

Наибольшее значение имеют нитрифицирующие бактерии, железобактерии, серобактерии.

Серобактерии окисляют сероводород до серы и далее до серной кислоты:

H 2 S О 2 S + энергия; S О 2 H 2 SO 4

Освобожденная в этих процессах энергия накапливается в виде молекул АТФ и используется затем для синтеза органических веществ, протекающего по типу синтеза глюкозы в темновой фазе фотосинтеза.

СО 2 + Н 2 О + АТФ углевод

Автотрофная ассимиляция – характерна для клеток зеленных растений, некоторых бактерий. В этих клетках органические вещества синтезируются из неорганических. Источником энергии служит свет или химическая энергия.

Гетеротрофная ассимиляция – имеет место в клетках животных организмов, грибов и большинства бактерий, которые для синтеза собственных веществ используют готовые органические соединения.

Например, на синтез белков в клетках животных идут аминокислоты, поступающие в организм с пищей.

СТРУКТУРНО-ЛОГИЧЕСКАЯ СХЕМА


Все живые организмы осуществляют обмен веществ с внешней средой. В клетках постоянно осуществляются процессы биосинтеза. Благодаря ферментам, из простых веществ образуются сложные соединения: из аминокислот синтезируются белки, из моносахаридов – сложные углеводы, из азотистых оснований – нуклеиновые кислоты. Различные жиры и масла образуются посредством химических превращений относительно простых веществ. Хитин- это наружный покров членистоногих, образующее хитина -сложный полисахарид (стр.7), у птиц, млекопитающих, наружным покровом является роговое вещество, основой которого является белок кератин. В конечном счете, состав синтезируемых крупных органических молекул обусловливается генотипом. Синтезированные вещества применяются в ходе роста с целью возведения клеток и их органоидов и ради замены израсходованных либо разрушенных молекул. Все без исключения взаимодействия биосинтеза проходят с поглощением энергии.

Пластический обмен

Пластический обмен, иначе называют биосинтез или анаболизм, происходит этот обмен только в клетке. Пластический обмен имеет три типа: фотосинтез, хемосинтез и биосинтез белков. Фотосинтез используется растениями и лишь некоторыми бактериями (цианобактериями). Такие организмы именуются автотрофами. Хемосинтез применяется определенными бактериями, в их число входят и анаэробные. Такие организмы именуются хемотрофами. Животные и грибы относят к гетеротрофным созданиям.

Фотосинтез

Процесс фотосинтеза происходит благодаря реакции, которая предполагает образование глюкозы и кислорода из углекислого газа и воды. У фотосинтеза две фазы, световая и темновая. Во время световой фазы, процесс фотосинтеза происходит в гранах хлоропласта, а в темновой, в стромах хлоропласта (см. Приложение 7) . Без солнечной энергии, фотосинтез бы не имел своего значения, поэтому это является важным фактором. Во время этого процесса из шести молекул углекислого газа и воды образуется шесть молекул кислорода и одна молекула глюкозы. Процесс фотосинтеза происходит в хлоропластах, в органеллах находится хлорофилл, благодаря ему и происходит синтез.

6СО2 + 6Н2О → С6Н12О6 + 6О2

Хемосинтез

Хемосинтез свойственен таким бактериям, как серным, нитрифицирующим и железобактериям. Бактерии используют энергию, приобретённую благодаря процессу окисления веществ, для восстановления углекислого газа до органических соединений.(см. Приложение 8) Серобактерии окисляют такое вещество, как сероводород, нитрифицирующие окисляют аммиак, а железобактерии окисляют закись железа.

Биосинтез белков

Пластический обмен - это синтез белков клеткой. Обмен имеет два главных процесса: транскрипцию и трансляцию.

Транскрипция- это процесс синтеза информационной РНК с помощью ДНК по принципу комплементарности. (см. Приложение 9)

Транскрипция представляет три этапа:

Образование первичного транскрипта

Процессинг

Сплайсинг

Трансляция- перенос информации о структуре белка с информационной РНК на синтезирующийся полипептид. (см. Приложение 10) Этот процесс осуществляется в цитоплазме на рибосоме. Трансляция происходит в четыре этапа. На первой стадии аминокислоты активируются специальным ферментом - аминоацилом Т-РНК-синтетазой. Для этого процесса используется энергия в виде АТФ. Затем образуется миноациладенилат. После этого следует процесс примыкания активированной аминокислоты к транспортной РНК, при этом выделяется АМФ. Далее во время третьего этапа, образованный комплекс связывается с рибосомой. Затем включаются аминокислоты в структуру белка в определенной последовательности, после чего транспортная РНК высвобождается.


Энергетический обмен

Энергетический обмен, так же называют катаболизмом. Пластический и энергетический обмен очень связанны, ведь для осуществления пластического обмена (анаболизма), необходима энергия, которая получается клеткой за счет катаболизма. С помощью этого процесса клетка синтезирует нужные нуклеиновые кислоты, белки, углеводы и т.п. Энергетический обмен- это процесс, в течении которого вещества, обладающие сложную структуру, расщепляются в наиболее простые или окисляются, из-за чего же организм приобретает энергию, требуемую для существования. Всего существуют три этапа энергетического обмена:

Подготовительный этап

Анаэробный этап- гликолиз (без участия кислорода)

Аэробный этап- клеточное дыхание (с участием кислорода)

Подготовительный этап

Во время этого этапа полимеры преобразуются в мономеры, то есть такие соединения, как белки, углеводы и липоиды, расщепляются на более простые. Этот процесс происходит вне клетки, в органах пищеварительной системы. Кислород на этом этапе энергетического обмена не требуется. В итоге реакций, белок распадается на аминокислоты, сложные углеводы - в простые моносахариды и липиды - на глицерин и высшие кислоты. Так же этот этап протекает и в лизосомах клетки.

Анаэробный этап

Этот этап иначе называют брожением или гликолизом. Образовавшиеся в подготовительном этапе вещества - глюкоза, аминокислоты и др. - подвергаются последующему ферментативному распаду без участия кислорода. В основном углеводы подвергаются брожению. В ходе химических реакций, применяемых на данной стадии катаболизма, образуются спирты, углекислый газ, ацетон, органические кислоты, в отдельных случаях водород и прочие вещества. Гликолиз - процесс расщепления глюкозы в анаэробных условиях до пировиноградной кислоты (ПВК), далее до молочной, уксусной, масляной кислот или этилового спирта, протекающий в цитоплазме клетки. В ходе бескислородного расщепления часть выделяемой энергии рассеивается в виде тепла, а часть запасается в молекулах АТФ. В клетках животных и грибов распространена реакция, в результате которой выделяется пировиноградная кислота.

Основная химическая реакция, на данном этапе выглядит так:

С6Н12О6 = 2С3Н4О3 + (4Н) + 2АТФ

В результате этого процесса образуется две молекулы АТФ.

Аэробный этап

Этот этап осуществляется в митохондриях.(см. Приложение 11) В данной стадии осуществляется окисление веществ, за счет чего освобождается определенный объем энергии. В этом же процессе кислород принимает участие. Кислород перемещается с помощью эритроцитов, содержащих гемоглобин. Полученные в предыдущих этапах вещества расщепляются клеткой до самых простых, то есть до углекислого газа и воды. Ферменты, содержащиеся в лизосомах, окисляют органические соединения в клетке. АДФ - аденозиндифосфат- вещество, которое также необходимо для получения энергии, вследствие клеточного дыхания. Основная химическая реакция, на данном этапе выглядит так:

2С3Н6О3 + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

В результате этого процесса образуются 36 молекул АТФ.

Можно заметить из данного уравнения, что энергии на этом этапе выделается немалое количество. Кроме того на данной стадии может осуществляться реакция полного окисления пировиноградной кислоты, вследствие которого также выделяется энергия, однако в меньшем количестве.

Следовательно, при полном расщеплении одной молекулы глюкозы клетка может синтезировать 38 молекул АТФ (2 молекулы в процессе гликолиза и 36 молекул в ходе аэробного этапа). (см. Приложение 12)

Общее уравнение аэробного дыхания можно записать следующим способом:

С6Н1206 + 602 + 38АДФ + 38Н3Р04 > 6С02 + 6Н20 + 38АТФ.


Заключение

Клетка- это высокоорганизованная единица жизни. Через клетки совершается поглощение, преобразование, запасание и применение веществ и энергии. Именно в клетке совершаются такие процессы, как дыхание, ферментация, фотосинтез, дупликация генетического материала. И такие процессы происходят, как в простых по структуре организмах (одноклеточные), так и в сложных по структуре организмах (многоклеточные). Жизнь всех организмов зависит от их клеток.


Приложение

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Приложение 5

Приложение 6

Приложение 7

Приложение 8

Приложение 9

Вопрос 1. Что такое диссимиляция? Перечислите ее этапы.
Диссимиляция , или энергетический обмен , - это совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии. Диссимиляция у аэробных (кислорододышащих) организмов происходит в три этапа:
подготовительный - расщепление высокомолекулярных соединений до низкомолекулярных без запасания энергии;
бескислородный - частичное бескислородное расщепление соединений, энергия запасается в виде АТФ; кислородный - окончательное расщепление органических веществ до углекислого газа и воды, энергия также запасается в виде АТФ.
Диссимиляция у анаэробных (не использующих кислород) организмов происходит в два этапа: подготовительный и бескислородный. В данном случае органические вещества расщепляются не полностью и энергии запасается гораздо меньше.

Вопрос 2. В чем заключается роль АТФ в обмене веществ в клетке?
Аденозинтрифосфорная кислота (АТФ) состоит из азотистого основания - аденина, сахара - рибозы и трех остатков фосфорной кислоты. Молекула АТФ очень неустойчива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии, расходуемой на обеспечение всех жизненных функций клетки (биосинтез, трансмембранный перенос, движение, образование электрического импульса и др.). Связи в молекуле АТФ называют макроэргическими.
Отщепление концевого фосфата от молекулы АТФ сопровождается выделением 40 кДж энергии.). При этом АТФ превращается в АДФ. Если произойдет отщепление второго остатка фофорной кислоты, АДФ превратится в АМФ. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекул АТФ в АДФ (или даже в АМФ).
Синтез АТФ происходит в митохондриях.

Вопрос 3. Какие структуры клетки осуществляют синтез АТФ?
В эукариотических клетках синтез основной массы АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением (запасанием) энергии. В пластидах АТФ образуется как промежуточный продукт световой стадии фотосинтеза.

Вопрос 4. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
Энергетический обмен обычно подразделяют на три этапа. Первый этап - Подготовительный, называемый также пищеварением. Осуществляется он главным образом вне клеток под действием ферментов, секретируемых в полость пищеварительного тракта. На этом этапе крупные молекулы полимеров распадаются на мономеры: белки - на аминокислоты, полисахариды - на простые сахара, жиры - на жирные кислоты и глицерин. При этом выделяется небольшое количество энергии, которая рассеивается и виде теплоты.
Бескислородный. В результате гликолиза одна молекула глюкозы расщепляется до двух молекул пировиноградной кислоты:
С 6 Н 12 О 6 <-----> 2С 3 Н 4 0 3 .
Распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. При этом 60% выделившейся энергии превращается в тепло, а 40% запасается в виде АТФ. При распаде одной молекулы глюкозы образуется 2 молекулы АТФ. Затем у анаэробных организмов происходит брожение - спиртовое (С 2 НС 5 ОН - этиловый спирт) или молочнокислое (С 3 Н 4 0 3 - молочная кислота). У аэробных организмов наступает третий этап энергетического обмена.
Кислородный. Этот этап катаболизма нуждается в присутствии молекулярного кислорода и называется дыханием. Развитие клеточного дыхания у аэробных микроорганизмов и в клетках эукариот стало возможным лишь после того, как в результате фотосинтеза в атмосфере Земли появился молекулярный кислород. Добавление к каталическому процессу стадии, осуществляющейся в присутствии кислорода, обеспечивает клетки мощным и эффективным путем извлечения из молекул питательных веществ и энергии.
Реакции кислородного расщепления, или окислительного катаболизма, протекают в специальных органоидах клетки - митохондриях, куда поступают молекулы пировиноградной кислоты. После целого ряда прекращений образуются конечные продукты - СО 2 и Н 2 О, которые затем диффундируют из клетки. Суммарное уравнение аэробного дыхания выглядит так:
С 6 Н 12 О 6 + 6О 2 + 36Н 3 РО 4 + 36АДФ <-----> 6СО 2 + 6Н 2 О + 36АТФ.
Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Всего в ходе второго и третьего этапов энергетического обмена при расщеплении одной молекулы глюкозы образуются 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Обмен веществ и энергии (метаболизм) осуществляется на всех уровнях организма: клеточном, тканевом и организменном. Он обеспечивает постоянство внутренней среды организма - гомеостаз - в непрерывно меняющихся условиях существования. В клетке протекают одновременно два процесса - это пластический обмен (анаболизм или ассимиляция) и энергетический обмен (фатаболизм или диссимиляция).

Пластический обмен - это совокупность реакций биосинтеза, или создание сложных молекул из простых. В клетке постоянно синтезируются белки из аминокислот, жиры из глицерина и жирных кислот, углеводы из моносахаридов, нуклеотиды из азотистых оснований и сахаров. Эти реакции идут с затратами энергии. Используемая энергия освобождается в ходе энергитического обмена. Энергетический обмен - это совокупность реакций расщепления сложных органических соединений до более простых молекул. Часть энергии, высвобождаемой при этом, идет на синтез богатых энергетическими связями молекул АТФ (аденозин-трифосфорной кислоты). Расщепление органических веществ осуществляется в цитоплазме и митохондриях с участием кислорода. Реакции ассимиляции и диссимиляции тесно связаны между собой и внешней средой. Из внешней среды организм получает питательные вещества. Во внешнюю среду выделяются отработанные вещества.

Ферменты (энзимы) - это специфические белки, биологические катализаторы, ускоряющие реакции обмена в клетке. Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Фермент катализирует только одну реакцию или действует только на один тип связи. Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и т.д.), протекающих в клетке или организме. В молекуле каждого фермента имеется участок, осуществляющий контакт между молекулами фермента и специфического вещества (субстрата). Активным центром фермента выступает функциональная группа (например, ОН - группа серина) или отдельная аминокислота.

Скорость ферментативных реакций зависит от многих факторов: температуры, давления, кислотности среды, наличия ингибиторов и т.д.

Этапы энергетического обмена:

  • Подготовительный - происходит в цитоплазме клеток. Под действием ферментов полисахариды расщепляются на моносахариды (глюкоза, фруктоза и Др.), жиры расщепляются до глицерина и жирных кислот, белки - до аминокислот, нуклеиновые кислоты до нуклеотидов. При этом выделяется небольшое количество энергии, которое рассеивается в виде тепла.
  • Бескислородный (анаэробное дыхание или гликолиз) - многоступенчатое расщепление глюкозы без участия кислорода. Его называют брожением. В мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы лировиноградной кислоты (С 3 Н 4 О 3), которые затем восстанавливаются в молочную кислоту (С 3 Н 6 О 3). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.

    Суммарное уравнение этого этапа: С 6 Н 12 О 6 + 2Н 3 РО 4 + 2АDФ -> 2С 3 Н 6 О 3 + 2АТФ + 2Н 2 О

    У дрожжевых грибков молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение). У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и др. При распаде одной молекулы глюкозы образуется две молекулы АТФ, в связях которой сохраняется 40% энергии, остальная энергия рассеивается в виде тепла.

  • Кислородное дыхание - этап аэробного дыхания или кислородного, расщепления, который проходит на складках внутренней мембраны митоходрий - кристах. На этом этапе вещества предыдущего этапа расщепляются до конечных продуктов распада - воды и углекислого газа. В результате расщепления двух молекул молочной кислоты образуются 36 молекул АТФ. Основное условие нормального течения кислородного расщепления - целостность митохондриальных мембран. Кислородное дыхание - основной этап в обеспечении клетки кислородом. Он в 20 раз эффективнее бескислородного этапа.

    Суммарное уравнение кислородного расщепления: 2С 3 Н 6 0 3 + 60 2 + 36H 3 PО 4 + 36АДФ -> 6CO 2 + 38Н 2 О + 36АТФ

По способу получения энергии все организмы делятся на две группу - автотрофные и гетеротрофные.

Энергетический обмен в аэробных клетках растений, грибов и животных протекает одинаково. Это свидетельствует об их родстве. Количество митохондрий в клетках тканей различно, оно зависит от функциональной активности кйеток. Например, много митохондрий в клетках мышц.

Расщепление жиров на глицерин и жирные кислоты осуществляется ферментами - липазами. Белки вначале расщепляются до олигопептидов, а затем до аминокислот.

Ферменты (от лат. «fermentum» - брожение, закваска), энзимы, специфические белки, увеличивающие скорость протекания химических реакций в клетках всех живых организмов. По химической природе - белки, обладающие оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов и отсутствии ингибиторов. Ферменты называют также биокатализаторами по аналогии с катализаторами в химии. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926).

Роль ферментов в организме

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов - все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма - дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. - обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значителной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.

Каталитические свойства ферментов

Ферменты - самые активные среди всех известных катализаторов. Большинство реакций в клетке протекает в миллионы и миллиарды раз быстрее, чем если бы они протекали в отсутствие ферментов. Так, одна молекула фермента каталазы способна за секунду превратить в воду и кислород до 10 тыс. молекул токсичной для клеток перекиси водорода, образующейся при окислении различных соединений. Каталитические свойства ферментов обусловлены их способностью существенно уменьшать энергию активации вступающих в реакцию соединений, то есть в присутствии ферментов требуется меньше энергии для «запуска» данной реакции.

История открытия ферментов

Процессы, протекающие при участии ферментов, известны человеку с глубокой древности, ведь в основе приготовления хлеба, сыра, вина и уксуса лежат ферментативные процессы. Но только в 1833 году впервые из прорастающих зерен ячменя было выделено активное вещество, осуществляющее превращение крахмала в сахар и получившее название диастазы (ныне этот фермент называется амилазой). В конце 19 в. было доказано, что сок, получаемый при растирании дрожжевых клеток, содержит сложную смесь ферментов, обеспечивающих процесс спиртового брожения. С этого времени началось интенсивное изучение ферментов - их строения и механизма действия. Так как роль биокатализа была выявлена при изучении брожения, то именно с этим процессом были связаны два установившихся еще с 19 в. названия - «энзим» (в переводе с греч. «из дрожжей») и «фермент». Правда, последний синоним применяется только в русскоязычной литературе, хотя научное направление, занятое изучением ферментов и процессов с их участием, традиционно называется энзимологией. В первой половине 20 в. было установлено, что по химической природе ферменты yвляются белками, а во второй половине века для многих сотен ферментов уже была определена последовательность аминокислотных остатков, установлена пространственная структура. В 1969 впервые был осуществлен химический синтез фермента рибонуклеазы. Огромные успехи были достигнуты в понимании механизма действия ферментов.

Местонахождение ферментов в организме

В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию - синтез ДНК(ДНК-полимеразы), за ее транскрипцию - образование РНК (РНК-полимеразы). В митохондриях присутствуютферменты, ответственные за накопление энергии, в лизосомах - большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.

Условия действия ферментов

Все реакции с участием ферментов протекают, в основном, в нейтральной, слабощелочной или слабокислой среде. Однако максимальная активность каждого отдельного фермента проявляется при строго определенных значениях pH. Для действия большинства ферментов теплокровных животных наиболее благоприятной температурой является 37-40oС. У растений при температуре ниже 0o С действие ферментов полностью не прекращается, хотя жизнедеятельность растений при этом резко снижается. Ферментативные процессы, как правило, не могут протекать при температуре выше 70o С, так как ферменты, как и всякие белки подвержены тепловой денатурации (разрушению структуры).

Размеры ферментов и их строение

Молекулярная масса ферментов, как и всех остальных белков, лежит в пределах 10 тыс. - 1 млн. (но может быть и больше). Они могут состоять из одной или нескольких полипептидных цепей и могут быть представлены сложными белками. В состав последних наряду с белковым компонентом (апоферментом) входят низкомолекулярные соединения - коферменты (кофакторы, коэнзимы), в том числе ионы металлов, нуклеотиды, витамины и их производные. Некоторые ферменты образуются в форме неактивных предшественников (проферментов) и становятся активными после тех или иных изменений в структуре молекулы, например, после отщепления от нее небольшого фрагмента. К их числу относятся пищеварительные ферменты трипсин и химотрипсин, которые синтезируются клетками поджелудочной железы в форме неактивных предшественников (трипсиногена и химотрипсиногена) и обретают активность в тонком кишечнике в составе поджелудочного сока. Многие ферменты образуют так называемые ферментные комплексы. Такие комплексы, например, встроены в мембраны клеток или клеточных органелл и участвуют в транспорте веществ.

Подвергающееся превращению вещество (субстрат) связывается с определенным участком фермента, aго активным центром, который формируется боковыми цепями аминокислот, находящимися часто в значительно удаленных друг от друга участках полипептидной цепи. Например, активный центр молекулы химотрипсина образуют остатки гистидина, находящегося в полипептидной цепи в положении 57, серина в положении 195 и аспарагиновой кислоты в положении 102 (всего в молекуле химотрипсина 245 аминокислот). Таким образом, сложная укладка полипептидной цепи в молекуле белка - ферменте обеспечивает возможность нескольким боковым цепям аминокислот оказаться в строго определенном месте и на определенном расстоянии друг от друга. Коферменты также входят в состав активного центра (белковая часть и небелковый компонент в отдельности ферментативной активностью не обладают и приобретают свойства фермента, лишь соединившись вместе).

Протекание процессов с участием ферментов

Большинство ферментов отличается высокой специфичностью (избирательностью) действия, когда превращение каждого реагирующего вещества (субстрата) в продукт реакции осуществляется специальным ферментом. При этом действие фермента может быть строго ограничено одним субстратом. Например, фермент уреаза, участвующий в распаде мочевины до аммиака и углекислого газа, не реагирует на сходную по строению метилмочевину. Многие ферменты aействуют на несколько родственных по структуре соединений или на один тип химической связи (например, расщепляющие фосфодиэфирную связь фермент фосфатазы). Фермент осуществляет свое действие через образование фермент-субстративного комплекса, который затем распадается с образованием продуктов ферментативной реакции и освобождением фермента. A результате образования фермент-субстратного комплекса субстрат изменяет свою конфигурацию; при этом преобразуемая фермент-химическая связь ослабляется и реакция протекает с меньшей начальной затратой энергии и, следовательно, с намного большей скоростью. Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Многие ферментативные реакции в зависимости от концентрации в среде субстрата и продукта реакции могут протекать как в прямом, так и в обратном направлении (избыток субстрата сдвигает реакцию в сторону образования продукта, в то время как при чрезмерном накоплении последнего будет происходить синтез субстрата). Это означает, что ферментативные реакции могут быть обратимыми. Например, карбоангидраза крови превращает поступающий из тканей углекислый газ в угольную кислоту (H2CO3), а в легких, напротив, катализирует превращение угольной кислоты в воду и углекислый газ, который удаляется при выдохе. Однако следует помнить, что ферменты, как и другие катализаторы, не могут сдвигать термодинамическое равновесие химической реакции, а лишь значительно ускоряют достижение этого равновесия.

Номенклатура названий ферментов

При наименовании фермента cа основу берут название субстрата и добавляют суффикс «аза». Так появились, в частности, протеиназы - ферменты, расщепляющие белки (протеины), липазы (расщепляют липиды, или жиры) и т. д. Некоторые ферменты получили специальные (тривиальные) названия, например, пищеварительные ферменты- пепсин, химотрипсин и трипсин.

В клетках организма протекает несколько тысяч различных реакций обмена веществ и, следовательно, имеется столько же ферментов. Aля того, чтобы привести такое многообразие в систему, было принято международное соглашение о классификации ферментов. A соответствии с этой системой все ферменты a зависимости от типа катализируемых ими реакций были поделены на шесть основных классов, каждый из которых включает ряд подклассов. Кроме того, каждый фермент получил четырехзначный кодовый номер (шифр) и название, указывающее на реакцию, которую yтот фермент катализирует. Ферменты, катализирующие одну и ту же реакцию у организмов разных видов, могут существенно различаться между собой по своей белковой структуре, но в номенклатуре имеют общее название и один кодовый номер.

Болезни, связанные с нарушением выработки ферментов

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей - галактоземия (приводит к умственной отсталости) - развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозы в легко усваиваемую глюкозу. Причиной другого наследственного заболевания - фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланина в тирозин. Определение активности многих ферментов a крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Использование ферментов человеком

Так как ферменты сохраняют свои свойства и вне организма, их успешно используют в различных отраслях промышленности. Например, протеолитический фермент папайи (из сока папайи) - в пивоварении, для мягчения мяса; пепсин - при производстве «готовых» каш и как лекарственный препарат; трипсин - при производстве продуктов для детского питания; реннин (сычужный фермент из желудка теленка) - в сыроварении. Каталаза широко применяется в пищевой и резиновой промышленности, а расщепляющие полисахариды целлюлазы и пектидазы - для осветления фруктовых соков. Ферменты необходимы при установлении структуры белков, нуклеиновых кислот и полисахаридов, в генетической инженерии и т. д. С помощью ферментов получают лекарственные препараты и сложные химические соединения.

Обнаружена способность некоторых форм рибонуклеиновых кислот (рибозимов) катализировать отдельные реакции, то есть выступать в качестве ферментов. Возможно, в ходе эволюции органического мира рибозимы служили биокатализаторами до того, как ферментативная функция перешла к белкам, более приспособленным к выполнению этой задачи.

Поделитесь с друзьями или сохраните для себя:

Загрузка...