Физиологическая пролиферация. Проблема клеточной пролиферации в медицине

Амитоз

Прямое деление или амитоз – это деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Формально амитоз должен приводить к появлению двух клеток, однако чаще всего он приводит к разделению ядра и появлению двух- или многоядерных клеток.

Начинается амитотическое деление с фрагментации ядрышек, вслед за этим делится перетяжкой ядро (или инвагинацией). Может быть множественное деление ядра, как правило, неравной величины (при патологических процессах). Многочисленные наблюдения показали, что амитоз встречается почти всегда в клетках отживающих, дегенерирующих и не способных дать в дальнейшем полноценные элементы. В норме амитотическое деление встречается в зародышевых оболочках животных, в фолликулярных клетках яичника, в гигантских клетках трофобластов. Положительное значение амитоз имеет в процессе регенерации тканей или органа (регенеративный амитоз). Амитоз в стареющих клетках сопровождается нарушениями биосинтетических процессов, включая репликацию, репарацию ДНК, а также транскрипцию и трансляцию. Изменяются физико-химические свойства белков хроматина ядер клеток, состав цитоплазмы, структура и функции органоидов, что влечет за собой функциональные нарушения на всех последующих уровнях – клеточном, тканевом, органном и организменном. По мере нарастания деструкции и угасания восстановления наступает естественная смерть клетки. Нередко амитоз встречается при воспалительных процессах и злокачественных новообразованиях (индуцированный амитоз).

Как известно, ткани с высокой скоростью обновления клеток более чувствительные к воздействию различных мутагенов, чем ткани, в которых клетки обновляются медленно. Однако, например, лучевое повреждение может проявляться не сразу и необязательно ослабевает с глубиной, иногда даже гораздо сильнее повреждает глубоколежащие ткани, чем поверхностные. При облучении клеток рентгеновскими или гамма-лучами в жизненном цикле клеток происходят грубые нарушения: митотические хромосомы изменяют форму, возникают их разрывы с последующим неправильным соединением фрагментов, иногда отдельные части хромосом исчезают вовсе. Могут возникнуть аномалии веретена (образоваться не два полюса в клетке, а три), что приведет к неравномерному расхождению хроматид. Иногда повреждение клетки (большие дозы облучения) бывает столь значительным, что все попытки клетки приступить к митозу оказываются безуспешными и деление прекращается.

Подобным действием облучения и объясняется от части его применение в терапии опухолей. Цель облучения не в том, чтобы убить опухолевые клетки в интерфазе, а в том, чтобы они утратили способность к митозу, что приведет к замедлению или прекращению роста опухоли. Излучение в дозах не летальных для клетки может вызвать мутации, приводящие к усиленной пролиферации измененных клеток и дать начало злокачественному росту, как это часто случалось с теми, кто работал с рентгеновскими лучами, не зная об их опасности.

На пролиферацию клеток влияют многие химические вещества, в том числе лекарственные препараты. Например, алкалоид, колхицин (его содержат клубнелуковицы безвременника) был первым лекарственным препаратом, который снимал боль в суставах при подагре. Выяснилось, что он обладает и другим действием – останавливать деление путём связывания с белками тубулинами из которых формируются микротрубочки. Таким образом, колхицин, как и многие другие препараты блокируют образование веретена деления.

На этом основании, такие алкалоиды как винбластин и винкристин применяются для лечения некоторых видов злокачественных новообразований, входя в арсенал современных химиотерапевтических противораковых средств. Следует отметить, что способность веществ типа колхицина останавливать митоз, используется как метод для последующей идентификации хромосом в медицинской генетике.

Большое значение для медицины имеет способность дифференцированных (причем половых) клеток сохранять свои потенции к пролиферации, что приводит иногда к развитию в яичниках опухолей, на разрезе которых видны клеточные пласты, ткани, органы представляющие собой "мешанину". Выявляются клочки кожи, волосяных фолликулов, волос, уродливых зубов, кусочков костей, хряща, нервной ткани, фрагментов глаза и т.д., что требует срочного хирургического вмешательства.

Определение и периодизация жизненного цикла клетки. Типы клеточной пролиферации. Митотический цикл и его протяжённость во времени. Интерфаза, её периоды и процессы, происходящие в них. Редупликация ДНК, её механизмы. Биологическое значение митоза.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Митоз и мейоз

Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

презентация , добавлен 21.02.2013

Регуляция клеточного цикла и биологическое значение митоза и мейоза

Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

презентация , добавлен 07.12.2014

Ядро. Репродукция клеток

Рассмотрение компонентов ядра: кариолеммы, кариоплазмы, хроматина и ядрышек. Этапы клеточного цикла: гетерокаталитическая интерфаза, митотический цикл (автокаталитическая интерфаза) и период относительного покоя. Метафаза, анафаза и телофаза мейоза.

презентация , добавлен 20.09.2014

Воспроизводство клеток

Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

лекция , добавлен 27.07.2013

Механизмы регуляции клеточного цикла

Сущность клеточного цикла — периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

презентация , добавлен 28.10.2014

Деление клетки. Митоз

Значение роста и развития клеток. Жизненный и митотический циклы клеток. Продолжительность жизни разных типов клеток в многоклеточном организме. Рассмотрение митоза как универсального способа размножения, сохраняющего постоянство числа хромосом в клетках.

презентация , добавлен 05.12.2014

Деление клетки. Митоз. Амитоз. Мейоз

Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

презентация , добавлен 25.10.2011

Жизненный цикл клетки, вирусы и бактериофаги.

Проблемы пролиферации в медицине

Размножение и развитие организмов

Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление. Интерфаза, метафаза и анафаза, деление клетки. Биологический смысл митоза. Вирусы и бактериофаги как неклеточные формы жизни. Виды и формы размножения организмов.

реферат , добавлен 06.07.2010

Основные понятия цитологии

История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

реферат , добавлен 27.09.2009

Строение растительной клетки. Ткани растений

Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

учебное пособие , добавлен 12.12.2009

Пролиферация

Пролиферация - это размножение клеток, которое является завершающей фазой воспаления, при которой происходит как бы отграничение очага воспаления от окружающей ткани.

Проблемы клеточной пролиферации в медицине.

Однако пролиферация может наблюдаться в самые ранние фазы воспаления вслед за выбросом медиаторов.

Размножаются мезенхимальные камбиальные, адвентициальные и эндотелиальные клетки, ретикулярные клетки, вышедшие из крови В- и Т-лимфоциты, а также моноциты.

При размножении клеток в очаге воспаления наблюдаются клеточные дифференцировки и трансформации. Так, при дифференцировке мезенхимальные камбиальные клетки оказываются предшественниками эпителиоидных клеток, гистиоцитов, макрофагов, фибробластов, фиброцитов.

В-лимфоциты - предшественники плазматических клеток, Т-лимфоциты, видимо, не трансформируются в другие формы. Моноциты дают начало эпителиоидным клеткам и макрофагам.

Эпителиоидные клетки, получившие свое название в связи с тем, что по своему внешнему виду напоминают клетки плоского эпителия, обычно трансформируются в фибробласты.

Лаброциты (тучные клетки), носители медиаторов воспаления имеют гематогенное происхождение, их клетки-предшественники пока остаются неизвестными. Полинуклеарные лейкоциты, появившиеся в очаге воспаления, никаким трансформациям не подвергаются и, выполнив свои сложные функции в очаге воспаления (фагоцитоз, выброс гидролитических ферментов), погибают.

Погибает также большинство перегруженных в процессе фагоцитоза макрофагов, не подвергающихся дальнейшим трансформациям. Иногда при пролиферации эпителиоидных и камбиальных эндотелиальных клеток возникают гигантские многоядерные клетки.

В фибробластах по ходу пролиферации наблюдается усиленный синтез белка, что подтверждается нарастающей пиронинофилией их цитоплазмы, указывающей на накопление в ней рибонуклеопротеидов, образующих матрицу для белка тропоколлагена - предшественника коллагена.

Фибробласты постепенно превращаются в зрелые клетки соединительной ткани - фиброциты.

На конечном этапе явлений пролиферации образуются продукты деятельности фибробластов - первоначально нежные аргирофильные, а позднее коллагеновые волокна, которые вместе с клетками отграничивают воспалительный очаг от здоровой ткани или разрастаются, постепенно его замещая.

«Патологическая анатомия», А.И.Струков

Популярные статьи раздела

Псориаз — одно из самых часто встречающихся хронических кожных заболеваний и одно из самых загадочных. Несмотря на большие успехи в изучении псориаза, причина его по-прежнему остается неизвестной. Частота заболевания псориазом в разных странах варьируется от 0,1 до 7%. В России им страдает около 2% населения. Долгое время считалось, что псориаз является одной из форм проказы, и лишь к концу XIX столетия была установлена его абсолютная самостоятельность. Псориаз сопровождается появлением на ней ярко-розовых высыпаний с обильным шелушением на их поверхности. Обычно очаги псориаза возникают на локтях и на коленях. На этих местах высыпания могут сохраняться даже тогда, когда в результате лечения они исчезают на других участках кожи. Помимо локтей и коленей в процесс очень часто вовлекается волосистая часть головы. При этом волосы не изменяются и не выпадают.

Суть псориаза состоит в том, что клетки кожи больного начинают созревать и, соответственно, отмирать гораздо быстрее, чем это происходит у здорового человека. Так, если нормальный цикл созревания клеток поверхностных участков кожи составляет от 24 до 28 дней, то при псориазе это время сокращается до 4-5 дней. Изменения в состоянии кожи обычно сопровождаются нарушением кальциевого обмена в организме. В частности, у больных псориазом отмечается снижение содержания витамина D. Провоцирующими моментами могут являться нервно-психические факторы (стресс), травмы кожи, применение некоторых медикаментов (чаще антибиотиков), злоупотребление алкоголем, инфекционные заболевания (вызванные стрептококком, вирусами) и др.

Изменения иммунной системы при псориазе выявлены как на клеточном, так и на гуморальном уровне и заключаются в изменении содержания иммуноглобулинов основных классов, циркулирующих иммунных комплексов, пула лимфоцитов в периферической крови, В- и Т-популяций и субпопуляций лимфоцитов, клеток-киллеров, фагоцитарной активности сегментоядерных лейкоцитов.

Считается, что первичные изменения при псориазе происходят на уровне клеток как дермального слоя, так и эпидермиса. Нарушения регуляции в клетках дермы вызывают избыточную пролиферацию в основном нормального эпидермиса. Гиперпролиферация кератиноцитов приводит к секреции цитокинов и эйкозаноидов, которые обостряют кожное воспаление. В очагах поражения эпидермиса клетки, презентирующие антиген, продуцируют интерлейкин-1 (ИЛ-1). Вероятно, ИЛ-1 идентичен фактору активации Т-лимфоцитов эпидермиса (ETAF), который продуцируется кератиноцитами и активирует лимфоциты тимуса. ИЛ-1 обусловливает хемотаксис Т-лимфоцитов и за счет стимулирования их миграции в эпидермис может отвечать за инфильтрацию эпидермиса этими клетками. Интерлейкины и интерфероны, продуцируемые Т-лимфоцитами, сами могут быть медиаторами в процессах гиперпролиферации кератиноцитов, а также медиаторами воспаления и таким образом способствуют поддержанию порочного круга, который определяет хронический характер псориаза. (7)

Различают два типа псориаза. Псориаз I типа связан с системой HLA-антигенов (главного комплекса гистосовместимости тканей). Среди больных псориазом этот тип выявляется у 65%, причем заболевание у них начинается в молодом возрасте (18-25 лет). Псориаз II типа не связан с системой HLA-антигенов и возникает в более старшем возрасте.

Главной целью лечения псориаза является достижение такого состояния, которое приемлемо для конкретного больного. Из-за хронического течения и непредсказуемой природы заболевания ясный прогноз дать нелегко. В большинстве случаев, однако, псориаз протекает в легкой форме, затрагивая ограниченные участки кожи. В тяжелых случаях болезнь затрагивает социальные аспекты, появляются проблемы в семейной жизни, на работе и при общении с окружающими.

Основными патологическими процессами при псориазе являются гиперплазия эпидермиса с нарушением дифференцировки эпителиоцитов и воспалительная реакция в дерме. В соответствии с этим все методы патогенетической терапии в настоящее время направлены на подавление пролиферации эпителиоцитов, нормализацию нарушений дифференцировки эпителиоцитов, устранение воспалительного процесса.

Существует более 700 разнообразных методов лечения псориаза, появление нового метода лечения или медикамента не означает, что этот метод или медикамент лучше, чем применявшиеся ранее для терапии псориаза. Результаты научных исследований последних лет показывают, что пусковыми моментами для возникновения псориатических высыпаний могут быть инфекционные заболевания (часто псориаз начинается после тяжелых простудных состояний — ангин, гриппа и т.д.), различные травмы, повреждения кожи, нервно-эмоциональные стрессы, резкие изменения климата, прием некоторых лекарственных препаратов. Доказана также наследственная предрасположенность к псориазу.

В последние годы установлено, что нарушения иммунитета, особенно его клеточного звена, являются ведущим механизмом в развитии псориаза, особенно псориаза I типа. Современные исследователи определяют псориаз как системную болезнь, в патогенезе которой важную роль играют иммунологические нарушения. В экстрактах псориатических чешуек обнаружены антигенные компоненты, отсутствующие в коже здоровых лиц, а в сыворотке крови выявлены аутоантитела к ним. Это дает основание рассматривать псориаз как болезнь, в патогенезе которой играет роль и аутоиммунный компонент.

В 1996 году были проведены сравнительные исследования иммунологических показателей периферической крови и биоптатов "псориатической" кожи больных. С помощью проточного цитофлюориметра он выявил снижение в крови абсолютного и относительного количества Т-лимфоцитов за счет преимущественного уменьшения субпопуляции Т-хелперов по сравнению с субпопуляцией Т-супрессоров, что проявилось в снижении иммунорегуляторного индекса (Т-хелперы/Т-супрессоры). Количество В-лимфоцитов в периферической крови не претерпевало достоверных изменений. При гистохимическом исследовании биоптатов "псориатической" кожи с помощью моноклональных антител установлено, что основным клеточным компонентом дермальных инфильтратов являются Т-лимфоциты, тогда как В-лимфоциты встречаются лишь в виде единичных клеток в отдельных гистологических препаратах. Большая часть Т-лимфоцитов, инфильтрирующих дерму, относится к субпопуляции Т-хелперных клеток. Эти наблюдения дают основание предположить, что наблюдаемый в периферической крови дефицит Т-лимфоцитов, особенно хелперной субпопуляции, связан с их выходом из кровяного русла в кожу. Наряду с Т-лимфоцитами в инфильтратах дермы обнаружены клетки моноцитарно-макрофагального ряда и клетки Лангерганса. Отмечен высокий уровень экспрессии клетками воспалительных инфильтратов HLA-DR-антигена II класса основного комплекса гистосовместимости. (8)

Отмечено также проникновение в эпидермис из дермы хелперной субпопуляции Т-лимфоцитов и моноцитарно-макрофагальных клеток. Выявлено также увеличение числа клеток Лангерганса и экспрессия HLA-DR-комплекса на части кератиноцитов, что говорит об изменении их иммунологического фенотипа.

2.4. Проблемы клеточной пролиферации в медицине.

По современным представлениям, это отражает способность HLA-DR-кератиноцитов активировать эпидермальные Т-лимфоциты, а также выделять цитокины, некоторые из которых обладают свойством вызывать гиперпролиферацию эпителиальных клеток.

Эпидермальная гиперпролиферация — это ключевое патологическое явление при псориазе, поэтому обнаружение ее пусковых механизмов является основополагающим моментом в изучении патогенеза и разработке методов терапии заболевания. В работе D. J. M. Leung et al (1995) было отмечено, что золотистый стафилококк и стрептококки секретируют большое количество экзотоксинов, играющих роль суперантигенов, способных связываться с белками главного комплекса гистосовместимости тканей на антигенпредставляющих клетках — кератиноцитах, Т-лимфоцитах и моноцитах. Эти суперантигены у больных псориазом могут опосредовать активацию HLA-DR на кератиноцитах, инфильтрирующих Т-лимфоцитах и моноцитах. Селективная экспансия популяций Т-клеток локально может приводить к выделению цитокинов, обусловливающих пролиферацию кератиноцитов. Также не исключено прямое воздействие суперантигенов на кератиноциты, которые экспрессируют цитокины с пролиферативной активностью.

Клеточная пролиферация

Клеточная пролиферация – увеличение числа клеток путем митоза, приводящее к росту ткани, в отличие от другого способа увеличения ее массы (например, отек). У нервных клеток пролиферация отсутствует.

Во взрослом организме продолжаются процессы развития, связанные с делением и специализацией клеток. Эти процессы могут быть как нормальными физиологическими, так и направленными на восстановление организма вследствие нарушения его целостности.

Значение пролиферации в медицине определяется способностью клеток разных тканей к делению, с делением клеток связан процесс заживления ран и восстановление тканей после хирургических операций.

Пролиферация клеток лежит в основе регенерации (восстановления) утраченных частей.

Митоз и его биологическое значение. Проблемы клеточной пролиферации в медицине 2

Проблема регенерации представляет интерес для медицины, для восстановительной хирургии. Различают физиологическую, репаративную и патологическую регенерацию.

Физиологическая – естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, кожного эпителия.

Репаративная – восстановление после повреждения или гибели клеток и тканей.

Патологическая – разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща — на месте перелома, размножение клеток соединительной ткани — на месте мышечной ткани сердца, раковая опухоль.

В последнее десятилетие принято разделять клетки тканей животных по способности к делению на три группы:

1. Лабильные.

2. Стабильные.

3. Статические.

К лабильным относятся клетки, которые быстро и легко обновляются в процессе жизнедеятельности организма (клетки крови, эпителия, слизистой ЖКТ, эпидермиса и др.).

К стабильным относят клетки таких органов, как печень, поджелудочная железа, слюнные железы и др., которые обнаруживают ограниченную способность к размножению. Последняя, проявляется обычно при повреждении органа.

К статическим клеткам относят клетки поперечно-полосатой мышечной и нервной ткани, клетки которые, как считает большинство исследователей, не делятся.

Изучение физиологии клетки имеет важное значение для понимания онтогенетического уровня организации живого, механизмов саморегуляции клетки, обеспечивающих целостную функцию всего организма.

Редко кто столкнувшись с термином «пролиферация», что это такое, понять может сразу. Страшная неизлечимая болезнь, назначенное лекарство, а может быть, так врачи между собой дают знать о странностях больного?

Определение термина

Итак, пролиферация - что это за слово? Это биологический термин, который означает рост клеток, иначе - митоз. Клетки, которые обладают одинаковыми свойствами, одновременно начинают развиваться в одном и том же месте - говоря языком науки - имеют локальное расположение. В это время на них воздействуют внешние и внутренние факторы:

  1. Нейрогенная и гормональная стимуляция.
  2. Белки собственной цитоплазмы.

Иногда клеточный рост может задержаться или измениться под воздействиям какого-либо патогенного фактора.

Как осуществляется пролиферация?

Пролиферация возникает в самом окончании воспалительного процесса, когда разрушение патологически влияющими на ткани бактериями и вирусами заканчивается. Признаки пролиферации можно заметить на той стадии, при которой разрушенные клетки начинают восстанавливаться, токсины - выводиться, а поврежденные ткани поверхности - восстанавливаться.

Конечно же, заметить простым взглядом, как сменяет невозможно. Все процессы проходят на внутриклеточном уровне. Вырабатывающийся на этой стадии белок б2-макроглобулин восстанавливает проницаемость сосудов, пониженную во время заболевания, защищает соединительную ткань от разрушений. Внутри клеток исчезают их нейтрализует супероксиддисмутаза - вещество, содержащееся в человеческом организме, антиоксидантный фермент. На этой стадии и происходит пролиферация. Что это клеточное возрождение, видно по процессам. Клетки перестают синтезировать патогенные медиаторы, и на их поверхности появляются новые рецепторы, здоровые. Старые же засасываются внутрь и уничтожаются.

Механизм развития пролиферации

Для того чтобы понять, пролиферация - что это, и как она происходит, можно для примера рассмотреть обычную ранку, например на слизистой рта.

Каждый видел, как на поверхности язвы образуется белая пленка - фибрин. Она заполняет поврежденную поверхность. Основным образователем является белок - фибрин. Затем ткань становится более зрелой, в ней появляются новые сосуды - поверхность бывшей язвы поднимается над основной. Эпителий начинает восстанавливаться буквально сразу же после повреждения, и это уже показывает, что организму изнутри дается команда нарастить новую поверхность над повреждением, возобновить потерянную структуру.

Как происходит пролиферация, что это за процесс на данной стадии, под струпом восстанавливается тканевая поверхность или при первичном и вторичном натяжении - все зависит от глубины раны и ее площади.

Патологический процесс клеточного роста

Не всегда пролиферация - благо. Рассморим на примере ЖКТ.

Под воздействием повышенной кислотности в желудке могут образовываться язвенные повреждения и эрозии. Разумеется, запускается пролиферационный механизм. Клетки начинают формироваться в самом глубоком базальном слое эпителия. Поднимаются к поверхности, образуют непроницаемый барьер, восстанавливают разрушенную поверхность - вроде все замечательно.

Однако органы желудочно-кишечного тракта имеют достаточно неоднородное тканевое строение, в нем принимают участие множество клеток: париетальные, эндокринные, слизистые... И если хоть одна из пролиферационных структур дает сбой, одни клетки начинают делиться быстрее других под воздействием внутренних факторов - дифференцировка нарушается, и образуется опухоль.

Пролиферация в гинекологии

В жизненном цикле женщины детородного возраста пролиферация происходит регулярно. Во время менструации эндометрий отторгается, затем восстанавливается. Поэтому при взятии гистероскопии - соскоба со стенки матки - или при исследовании на аппарате УЗИ очень важно учитывать, какая фаза В течение месячного цикла эндометрий имеет различную толщину, и именно по нему и судят о работе детородных органов женщины.

Фаза роста эндометрия - очень важный параметр для оценки патоморфологической картины. Без знания этого параметра точный диагноз поставить невозможно даже опытному специалисту.


Клетка является элементарной единицей всего живого. Вне клетки жизни нет. Размножение клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала. Активация деления клетки происходит вследствие воздействия на нее внешних или внутренних факторов. Процесс деления клетки с момента ее активации называется пролиферацией. Иными словами, пролиферация – это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Время существования клетки как таковой, от деления до деления, обычно называют клеточным циклом.

Во взрослом организме человека клетки различных тканей и органов имеют неодинаковую способность к делению. Кроме того при старении интенсивность пролиферации клеток снижается (т.е. увеличивается интервал между митозами). Встречаются популяции клеток, полностью потерявшие свойство делиться. Это, как правило, клетки, находящиеся на терминальной стадии дифференцировки, например, зрелые нейроны, зернистые лейкоциты крови, кардиомиоциты . В этом отношении исключение составляют иммунные В- и Т-клетки памяти, которые, находясь в конечной стадии дифференцировки, при появлении в организме определенного стимула в виде ранее встречавшегося антигена, способны начать пролиферировать. В организме есть постоянно обновляющиеся ткани – различные типы эпителия, кроветворные ткани. В таких тканях существует пул клеток, которые постоянно делятся, заменяя отработавшие или погибающие типы клеток (например, клетки крипт кишечника , клетки базального слоя покровного эпителия, кроветворные клетки костного мозга). Также в организме существуют клетки, которые не размножаются в обычных условиях, но вновь приобретают это свойство при определенных условиях, в частности при необходимости регенерации тканей и органов.
Процесс пролиферации клеток жестко регулируется как самой клеткой (регуляция клеточного цикла, прекращение или замедление синтеза аутокринных ростовых факторов и их рецепторов), так и ее микроокружением (отсутствие стимулирующих контактов с соседними клетками и матриксом, прекращение секреции и/или синтеза паракринных ростовых факторов). Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что в свою очередь инициирует развитие онкологического процесса в организме.

Активация пролиферации

Основную функцию, связанную с инициацией пролиферации, берет на себя плазматическая мембрана клетки. Именно на ее поверхности происходят события, которые связаны с переходом покоящихся клеток в активированное состояние, предшествующее делению. Плазматическая мембрана клеток за счет располагающихся в ней молекул-рецепторов воспринимает различные внеклеточные митогенные сигналы и обеспечивает транспорт в клетку необходимых веществ, принимающих участие в инициации пролиферативного ответа. Митогенными сигналами могут служить контакты между клетками, между клеткой и матриксом, а также взаимодействие клеток с различными соединениями, стимулирующими их вступление в клеточный цикл, которые получили название факторов роста. Клетка, получившая митогенный сигнал на пролиферацию, запускает процесс деления.

Клеточный цикл


Весь клеточный цикл состоит из 4 этапов: пресинтетического (G1),
синтетического (S), постсинтетического (G2) и собственно митоза (М).
Кроме того, существует так называемый G0-период, характеризующий
состояние покоя клетки. В G1-периоде клетки имеют диплоидное
содержание ДНК на одно ядро. В этот период начинается рост клеток,
главным образом, за счет накопления клеточных белков, что обусловлено
увеличением количества РНК на клетку. Кроме того, начинается подготовка к синтезу ДНК. В следующем S-периоде происходит удвоение количества ДНК и соответственно удваивается число хромосом. Постсинтетическая G2 фаза называется также премитотической. В этой фазе происходит активный синтез мРНК (матричная РНК). Вслед за этой стадией следует собственно деление клетки надвое или митоз.

Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных) хромосом. В результате деления эти хромосомы переносятся в дочерние клетки. Такой тип деления эукариотических клеток – митоз (от греч. mitos – нити) – является единственным полноценным способом увеличения числа клеток. Процесс митотического деления подразделяют на несколько этапов: профаза, прометафаза, метафаза, анафаза, телофаза.

Регуляция клеточного цикла


Назначение регуляторных механизмов клеточного цикла состоит не в регуляции прохождения клеточного цикла как такового, а в том, чтобы обеспечить, в конечном счете, безошибочность распределения наследственного материала в процессе репродукции клеток. В основе регуляции размножения клеток лежит смена состояний активной пролиферации и пролиферативного покоя . Регуляторные факторы, контролирующие размножение клеток можно условно разделить на две группы: внеклеточные (или экзогенные) или внутриклеточные (или эндогенные). Экзогенные факторы находятся в микроокружении клетки и взаимодействуют с поверхностью клетки. Факторы, которые синтезируются самой клеткой и действуют внутри нее, относятся к
эндогенным факторам. Такое подразделение весьма условно, поскольку некоторые факторы, будучи эндогенными по отношению к продуцирующей их клетке, могут выходить из нее и действовать как экзогенные регуляторы на другие клетки. Если регуляторные факторы взаимодействуют с теми же клетками, которые их продуцируют, то такой тип контроля называется аутокринным. При паракринном контроле синтез регуляторов осуществляется другими клетками.

Экзогенные регуляторы пролиферации

У многоклеточных организмов регуляция пролиферации различных типов клеток происходит вследствие действия не одного какого-либо ростового фактора, а их совокупности. Кроме того, некоторые ростовые факторы, будучи стимуляторами для одних типов клеток, ведут себя как ингибиторы по отношению к другим. Классические ростовые факторы представляют собой полипептиды с молекулярной массой 7-70 кДа. К настоящему моменту известно более сотни таких ростовых факторов. Однако здесь будут рассмотрены только некоторые из них.

Пожалуй, самое большое количество литературы посвящено фактору роста из тромбоцитов (PDGF). Освобождаясь при разрушении сосудистой стенки, PDGF участвует в процессах тромбообразования и заживления ран. PDGF является мощным ростовым фактором для покоящихся фибробластов. Наряду с PDGF, не менее обстоятельно изучен эпидермальный фактор роста (EGF), который также способен стимулировать пролиферацию фибробластов. Но, кроме этого также стимулирующе влияет и на другие типы клеток, в частности на хондроциты .

Большую группу ростовых факторов составляют цитокины (интерлейкины, факторы некроза опухоли, колоние-стимулирующие факторы и т.д.). Все цитокины полифункциональны. Они могут, как усиливать, так и угнетать пролиферативные ответы. Так, например, разные субпопуляции CD4+ Т-лимфоцитов, Th1 и Th2, продуцирующие разный спектр цитокинов, по отношению друг к другу являются антагонистами. То есть, Th1 цтокины стимулируют пролиферацию клеток, которые их продуцируют, но в то же время подавляют деление Th2 клеток, и наоборот. Таким образом, в норме в организме сохраняется постоянный баланс этих двух типов Т-лимфоцитов. Взаимодействие факторов роста с их рецепторами на поверхности клетки приводит к запуску целого каскада событий внутри клетки. В результате чего происходит активация факторов транскрипции и экспрессия генов пролиферативного ответа, что в конечном итоге инициирует репликацию ДНК и вступление клетки в митоз.

Эндогенные регуляторы клеточного цикла



В нормальных эукариотических клетках прохождение клеточного цикла жестко регулируется. Причиной онкологических заболеваний является трансформация клеток, как правило, связанная с нарушениями регуляторных механизмов клеточного цикла. Одним из основных результатов дефективности клеточного цикла является генетическая нестабильность, поскольку клетки с ущербным контролем клеточного цикла теряют способность корректно удваивать и распределять между дочерними клетками свой геном. Генетическая нестабильность приводит к приобретению новых особенностей, которые отвечают за прогрессирование опухоли. Циклин-зависимые киназы (CDK) и их регуляторные субъединицы (циклины) являются основными регуляторами клеточного цикла. Прохождение клеточного цикла достигается путем последовательной активации и дезактивации разных комплексов циклин-CDK. Действие комплексов циклин-CDK заключается в фосфорилировании ряда белков-мишеней в соответствии с фазой клеточного цикла, в которой активен тот или иной комплекс циклин-CDK . Так, например, циклин Е-CDK2 активен в поздней G1 фазе и фосфорилирует белки, необходимые для прохождения через позднюю G1 фазу и вход в S фазу. Циклин А-CDK2 активен в S и G2 фазах, он обеспечивает прохождение S фазы и вход в митоз. Циклин А и циклин Е являются центральными регуляторами репликации ДНК. Поэтому неправильная регуляция экспрессии какого-либо из этих циклинов приводит к генетической нестабильности. Было показано, что накопление ядерного циклина А происходит исключительно в тот момент, когда клетка входит в S фазу, т.е. в момент G1/S перехода. С другой стороны, было показано, что уровень циклина Е повышался после прохождения так называемой точки ограничения (R-точки) в поздней G1 фазе, а затем существенно понижался, когда клетка входила в S фазу.

Пути регуляции CDK


Активность циклин-зависимых киназ (CDK) жестко регулируется, по крайней мере, по четырем механизмам:

1) Основной способ регуляции CDK – это связывание с циклином, т.е. в свободном виде киназа не активна, и только комплекс с соответствующим циклином обладает необходимыми активностями.

2) Активность комплекса циклин-CDK также регулируется за счет обратимого фосфорилирования. Для того чтобы приобрести активность, необходимо фосфорилирование CDK, которое осуществляется при участии CDK активирующего комплекса (САК), состоящего из циклина Н, CDK7 и Mat1.

3) С другой стороны, в молекуле CDK, в регионе, ответственном за
связывание субстрата, имеются сайты, фосфорилирование которых приводит к ингибированию активности комплекса циклин-CDK. Эти сайты
фосфорилируются группой киназ, включая Wee1 киназу, и дефосфорилируются фосфатазами Cdc25. Активность этих ферментов (Wee1 и Cdc25) существенно варьирует в ответ на разные внутриклеточные события, такие как повреждения ДНК.

4) В конце концов, некоторые комплексы циклин-CDK могут быть заингибированы вследствие связывания с ингибиторами CDK (CKI). Ингибиторы CDK состоят из двух групп белков INK4 и CIP/KIP. Ингибиторы INK4 (p15, p16, p18, p19) связываются с CDK4 и CDK6 и инактивируют их, предотвращая взаимодействие с циклином D. CIP/KIP ингибиторы (p21, p27, p57) могут связываться с комплексами циклин-CDK, содержащими CDK1, CDK2, CDK4 и CDK6. Примечательно, что при определенных условиях CIP/KIP ингибиторы могут усиливать киназную активность комплексов циклин D-CDK4/6.

Регуляция G1 фазы



В G1 фазе, в так называемой точке рестрикции (ограничения, R-точка), клетка принимает решение, делится ей или нет. Точка рестрикции – это та точка клеточного цикла, после которой клетка становится невосприимчивой к внешним сигналам вплоть до завершения всего клеточного цикла. Точка рестрикции делит G1 фазу на два функционально различных этапа: G1pm (постмитотический этап) и G1ps (пресинтетический этап). В течение G1pm клетка оценивает присутствующие в ее окружении ростовые факторы. Если необходимые ростовые факторы присутствуют в достаточном количестве, то клетка переходит в G1ps. Клетки, перешедшие в G1ps период, продолжают нормальное прохождение всего клеточного цикла даже при отсутствии ростовых факторов. Если отсутствуют необходимые ростовые факторы в G1pm периоде, то клетка переходит в состояние пролиферативного покоя (G0 фаза).

Основным результатом каскада сигнальных событий, происходящих вследствие связывания ростового фактора с рецептором на поверхности клетки, является активация комплекса циклин D-CDK4/6. Активность этого комплекса существенно возрастает уже в раннем G1 периоде. Этот комплекс фосфорилирует мишени, необходимые для прохождения в S фазу. Основным субстратом комплекса циклин D-CDK4/6 является продукт гена ретинобластомы (pRb). Нефосфорилированный pRb связывается и, тем самым, инактивирует транскрипционные факторы группы E2F. Фосфорилирование pRb комплексами циклин D-CDK4/6 приводит к высвобождению E2F, который проникает в ядро и инициирует трансляцию генов белков, необходимых для репликации ДНК, в частности генов циклина Е и циклина А. В конце G1 фазы происходит кратковременное увеличение количества циклина Е, которое предвещает накопление циклина А и переход в S фазу.

Остановку клеточного цикла в G1 фазе могут вызвать следующие факторы: повышение уровня ингибиторов CDK, депривация ростовых факторов, повреждения ДНК, внешние воздействия, онкогенная активация.

Регуляция S фазы



S фаза – это этап клеточного цикла, когда происходит синтез ДНК. Каждая из двух дочерних клеток, которые образуются в конце клеточного цикла, должна получить точную копию ДНК материнской клетки. Каждое основание молекул ДНК, составляющих 46 хромосом человеческой клетки, должно быть скопировано только один раз. Именно поэтому синтез ДНК регулируется крайне жестко.

Было показано, что только ДНК клеток, находящихся в G1 или S фазе, может реплицироваться. Это наводит на мысль, что ДНК должна быть «лицензирована» для репликации и что тот кусочек ДНК, который был удвоен, теряет эту «лицензию». Репликация ДНК начинается в месте связывания белков, называемых ORC (Origin of replicating complex). Несколько компонентов, необходимых для синтеза ДНК, связываются с ORC в поздней М или ранней G1 фазе, формируя пререплекативный комплекс, что собственно и дает «лицензию» ДНК для репликации. На стадии перехода G1/S к пререплекативному комплексу добавляются еще белки, необходимые для репликации ДНК, таким образом, образуется комплекс инициации. Когда начинается процесс репликации и образуется репликативная вилка, многие компоненты отделяются от инициирующего комплекса, а в месте инициации репликации остаются только компоненты пострепликативного комплекса.

Во многих работах было показано, что для нормального функционирования инициирующего комплекса необходима активность циклин А-CDK2. Кроме того, для успешного окончания S фазы также необходима активность комплекса циклин А-CDK2, что, собственно, и является основным регуляторным механизмом, обеспечивающим успешное завершение синтеза ДНК. Остановку в S фазе может индуцировать повреждение ДНК.

Регуляция G2 фазы



G2 фаза – это этап клеточного цикла, который начинается после завершения синтеза ДНК, но до начала конденсации. Основным регулятором прохождения G2 фазы служит комплекс циклин В-CDK2. Арест клеточного цикла в G2 фазе происходит вследствие инактивации комплекса циклин В-CDK2. Регулятором перехода G2/М является комплекс циклин В-CDK1, его фосфорилирование/дефосфорилирование регулирует вход в М фазу. Повреждения ДНК или наличие нереплицированных участков предотвращает переход в М фазу.

Регуляция митоза



Митоз – это собственно деление клетки надвое. Для прохождения раннего митоза необходима активность циклина А. Однако, основным регулирующим циклином, как и в предыдущей стадии, является циклин В в комплексе с CDK1. Активность комплекса циклин В-CDK1 приводит к деградации ядерной оболочки, конденсации хроматина и формированию из конденсированных хромосом метафазной пластинки. Перед тем как клетка переходит из метафазы в анафазу, происходит деградация циклина В. Утрата активности комплекса циклин В-CDK1 индуцирует миграцию хромосом к полюсам и деление клетки надвое. В профазе активированный комплекс циклин В-CDK1 гарантирует, что переход из интерфазы в митоз необратим за счет фосфорилирования членов семейства cdc25. Таким образом, снижается ингибиторное влияние cdc25B и cdc25C на комплекс циклин В-CDK1, что образует так называемую петлю позитивной обратной связи. Следовательно, активный комплекс циклин В-CDK1 приводит к необратимому выходу из интерфазы. В ранней анафазе происходит деградация комплекса циклин В-CDK1, что в последующем приводит к образованию ядерной оболочки и цитокинезу .

Повреждения ДНК



Для того чтобы сохранить и защитить генетическую информацию, эукариотические клетки развили сигнальные или коммуникационные сети, отвечающие за восстановление и контроль повреждений ДНК. Повреждения ДНК могут быть индуцированы многими агентами, включая ионизирующее облучение, свободные радикалы и токсичные вещества. Двуцепочечные разрывы ДНК (DBS) – наиболее часто встречающиеся повреждения ДНК. Подобные повреждения могут также образовываться и при репликации ДНК, а неправильная репарация разрывов может приводить к клеточной гибели, соматическим мутациям и формированию опухолей.

Пути восстановления двуцепочечных разрывов ДНК


Существует, по крайней мере, два пути восстановления двуцепочечных разрывов: гомологичная рекомбинация (HR) и негомологичное концевое сращивание (NHEJ). В случае репарации путем HR используются гомологичные последовательности ДНК в качестве шаблона для репаративного синтеза, тогда как в случае NHEJ часто происходит простое склеивание концов в местах разрывов.
Репарация разрывов ДНК через NHEJ происходит незамедлительно на протяжении всего клеточного цикла. Хотя NHEJ эффективно сращивает концы в области разрывов, этот путь часто приводит к потере генетической информации, поскольку происходит процессинг окончаний в области разрыва нуклеазами. В отличие от NHEJ, HR происходит, главным образом, в поздней S фазе и G2 фазе, поскольку зависит от присутствия сестринских хроматид, обеспечивающих шаблон для репарации. Поскольку восстановление путем HR достигается за счет нового синтеза с использованием в качестве шаблона полноценной гомологичной ДНК, это позволяет клетке восстанавливать ДНК с высокой точностью.

Клеточный ответ на повреждения ДНК и его регуляция



В восстановлении двуцепочечных разрывов ДНК ключевую роль играют белки ATM и NBS1. ATM – это протеин киназа, которая активируется незамедлительно после появления двуцепочечных разрывов ДНК. Помимо этого, для обеспечения эффективного функционирования репарации ДНК и прохождения ключевых точек клеточного цикла высоко упорядоченная структура эукариотического хроматина должна быть соответствующим образом изменена, чтобы обеспечить доступ факторов
репарации к ДНК. Эти изменения называются хроматиновыми перестройками, они осуществляются за счет специфических комплексов, связанных с модификациями гистонов.

Для эффективного восстановления двуцепочечных разрывов клетка активирует множество различных путей. Сигнальный каскад, генерируемый в ответ на разрывы ДНК, состоит из сенсорных, медиаторных и эффекторных белков и регулируется
посттрансляционными модификациями белков, а именно их фосфорилированием и ацетилированием. Клеточный ответ на двуцепочечные разрывы ДНК инициируется распознаванием поврежденного участка молекулы сенсорными белками. ATM и
NBS1 действуют совместно как первичные сенсорные белки. Вследствие распознавания повреждений ДНК сенсорными белками медиаторы, такие как BRCA1, MDC1, 53BP1, приобретают посттрансляционные модификации, которые генерируются сенсорными белками. Эти
модифицированные медиаторные белки затем усиливают сигнал от поврежденной ДНК и передают его на эффекторы, такие как RAD51, Artemis, Chk2, p53.

АТМ является одним из основных белков, вовлеченных в сохранение генетической стабильности, контроль длины теломеры и в активацию контрольных точек клеточного цикла. NBS1 вовлечен в выполнение
тех же функций. Как было сказано выше, эти белки действуют синергично. NBS1 образует комплекс с MRE11 и RAD50 и перетаскивает этот комплекс непосредственно к поврежденному участку ДНК. Кроме того, этот комплекс RAD50/MRE11/NBS1 (RMN) необходим для привлечения АТМ в место двуцепочечного разрыва и для эффективного
фосфорилирования субстратов АТМ.

Несмотря на то, что ATM фосфорилирует многие факторы, вовлеченные в HR путь, роль его в регуляции этого пути пока остается неясной.
Функцией NBS1 в качестве основного фактора в процессе HR является регуляция клеточной локализации комплекса RMN. Главную функцию в
накоплении комплекса RMN в месте двуцепочечного разрыва выполняет домен FHA/BRCT в молекуле NBS1. Этот домен необходим не только для эффективного процесса HR, но также для правильного
использования сестринских хроматид в качестве шаблона. Таким образом, NBS1 может регулировать и сцепление сестринских хроматид, и этап промежуточной диссоциации в течение HR реакции.

Функции АТМ в процессе NHEJ заключаются в фосфорилировании нуклеазы Artemis. NBS1 также принимает активное участие в репарации путем NHEJ. Хотя роль NBS1 в NHEJ пути в клетках млекопитающих не
настолько критична как в клетках грибов, было установлено, что NBS1 необходим для проведения реакций NHEJ вблизи разрывов ДНК. NBS1
вовлечен в Artemis-опосредованный путь NHEJ, вероятно, за
счет активации АТМ. В ответ на повреждение ДНК происходит взаимодействие между комплексом RMN и нуклеазой Artemis. Таким
образом, RMN может принимать участие в двух путях восстановления разрывов ДНК в АТМ-зависимой и АТМ-независимой манере. В большей степени RMN способствует гомологичной репарации, нежели пути
негомологичного сращивания концов.

Клеточные ответы на двуцепочечные разрывы ДНК регулируются за счет посттрансляционной модификации белков, а АТМ и комплекс RMN играют ключевую роль в подобной модификации. Эти белки в
дальнейшем обеспечивают полноценную репарацию поврежденной ДНК и, как следствие, нормальную жизнедеятельность клетки.

Регенерация тканей


Регенерацией называется образование новой ткани на месте
погибшей, отмершей. В здоровом, нормальном организме все время происходит физиологическая регенерация клеток; постоянно слущивается отмерший роговой слой эпидермиса, и взамен него во внутреннем слое кожи размножаются новые клетки. Такое же слущивание покровного эпителия происходит и на слизистых оболочках. В кровеносных сосудах эритроциты обычно живут 60-120 дней. Следовательно, приблизительно в течение 2 месяцев происходит полное их обновление. Так же систематически восполняются по мере их гибели или отмирания и лейкоциты, и другие форменные элементы крови. При различных патологических процессах клетки и ткани разрушаются в большем количестве, чем в норме. Регенерации тканей
принадлежит огромное значение в процессе восстановления поврежденных тканей и органов («восстановительная регенерация»). Иначе говоря, без регенерации было бы невозможно какое-либо заживление.

В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.

Формы регенерации:

1.Физиологическая регенерация - восстановление клеток ткани после их естественной гибели (например, кроветворение);

2. Репаративная регенерация - восстановление тканей и
органов после их повреждения (травмы, воспаления, хирургического воздействия и
так далее).

Уровни регенерации соответствуют уровням организации живой материи:

1. Клеточный (внутриклеточный);

2. Тканевой;

3. Органный.

Способы регенерации:

1. Клеточный способ (размножением (пролиферацией) клеток);

2. Внутриклеточный способ (внутриклеточное
восстановление органелл, гипертрофия, полиплоидия);

3. Заместительный способ (замещение дефекта ткани или
органа соединительной тканью, обычно с образованием рубца, например: образование рубцов в миокарде после инфаркта миокарда).

Факторы, регулирующие регенерацию:

1. Гормоны - биологически активные вещества;

2. Медиаторы - индикаторы метаболических процессов;

3. Кейлоны - это вещества гликопротеидной природы, которые синтезируются соматическими клетками, основная функция - торможение клеточного созревания;

4. Антагонисты кейлонов - факторы роста;

5. Микроокружение любой клетки.

Регуляция регенерации тканей


Регенерация тканей происходит вследствие пролиферации недифференцированных клеток, обладающих способностью не только делится под действием соответствующих стимулов, но также и дифференцироваться в клетки той ткани, регенерация которой
происходит. Эти клетки носят название взрослых стволовых клеток. Многие ткани взрослого организма, такие как ткани гемопоэтической системы, пищеварительный эпителий, мозг, эпидермис, легкие содержат пул таких клеток. Стволовые клетки тканей взрослого индивидуума снабжают организм зрелыми дифференцированными клетками в
течение нормального гомеостаза, а также во время регенерации и восстановления тканей и органов. Две уникальных особенности характеризуют взрослые стволовые клетки: способность генерировать новые (т.е. способность самообновляться) и способность давать дифференцированное потомство, которое утрачивает способность к самообновлению.

Наши знания о механизмах, которые определяют когда, где и почему стволовые клетки будут самообновляться или дифференцироваться, остаются весьма ограниченными, но, тем не менее, недавно было показано, что микроокружение (или ниша) стволовых клеток
обеспечивает необходимые сигналы для дальнейшего поведения этих клеток. Более того, утрата контроля над поведением этих клеток может приводить к трансформации клеток и раку. Дифференцированные
клетки наряду с выполнением своих специфических функций способны синтезировать особые вещества - кейлоны , тормозящие интенсивность размножения клеток-предшественников и стволовых клеток. Если в силу каких-либо причин количество дифференцированных функционирующих клеток уменьшается (например, после травмы), тормозящее действие кейлонов ослабевает и численность популяции
восстанавливается. Кроме кейлонов (местных регуляторов), клеточное размножение контролируется гормонами; одновременно продукты жизнедеятельности клеток регулируют активность желёз внутренней секреции. Если какие-либо клетки под воздействием внешних повреждающих факторов претерпевают мутации, они
элиминируются из тканевой системы вследствие иммунологических реакций.

Заключение


Исследования в области изучения механизмов контроля клеточного цикла и регуляции репарации ДНК широко ведутся во всем мире. Эта тематика является актуальной уже многие десятилетия, поскольку с нарушениями процессов деления клеток связаны многие заболевания, в частности онкологические болезни. Кроме того, процесс старения организма прежде всего связан с процессами старения клеток (это и неспособность клеток к самовоспроизведению и регенерации, неспособность к сохранению и восстановлению в случае "поломок" наследственной информации).

Огромную роль в изучении механизмов регуляции клеточного цикла сыграл британский ученый Paul Maxime Nurse. P. Nurse вместе с Leland H. Harwell и R. Timothy Hunt в 2001г. получили Нобелевскую премию в области физиологии и медицины за открытие механизмов регуляции клеточного цикла циклинами и циклин-зависимыми киназами. P. Nurse имеет огромное количество публикаций по тематике регуляции работы отдельных клеток и организма в целом.

Известным ученым в области изучения клеточного цикла и репарации ДНК является профессор Гарвардского университета, генетик, Stephen J. Elledge . S. Elledge изучает регуляцию клеточного цикла и клеточные ответы на повреждения ДНК. Elledge, вслед за нобелевским лауреатом Paul Nurse, открывшим ключевой ген клеточного цикла Cdc2 у грибов, обнаружил гомологичный ген в клетках млекопитающих. Таким образом, ему удалось открыть регуляторные механизмы, лежащие в основе перехода из G1 в S фазу клеточного цикла, и, кроме того, выявить ошибки, происходящие на этом этапе, которые приводят к злокачественной трансформации клеток. Elledge со своим коллегой Wade Harper выделили ген р21 , который является ингибитором Cdc2 . Они показали, что мутации в этом гене наблюдаются практически в половине случаев раковых заболеваний. Также Elledge обнаружил ген р57 , член семейства р21 , который является мутированным в случае заболевания, называемого синдромом Beckwith-Wiedemann , это наследственное заболевание, при котором значительно повышен риск злокачественных новообразований. Другой областью исследования проф. Elledge является изучение вопросов, связанных с распознаванием и репарацией повреждений ДНК. Не так давно ему удалось идентифицировать фермент Chk2, который активирует белок р53 (супрессор опухолевого роста), тем самым, предотвращая деление клеток, имеющих повреждения в молекуле ДНК. В другом своем исследовании Elledge показал, что белок, известный как АТМ, участвует в репарации ДНК. А мутации в гене, кодирующем этот белок, встречаются в 10% случаев рака молочной железы. Кроме этого, Stephen Elledge разрабатывает генетические технологии для создания новых лекарственных препаратов.

Для поддержания и сохранения гомеостаза организма необходимы жесткие системы регуляции процессов, протекающих не только в целом организме, но также и процессов, протекающих на клеточном и молекулярном уровнях. Так, во избежание формирования злокачественных новообразований, в каждой делящейся клетке организма выработались механизмы, контролирующие ее деление. Причем этот контроль осуществляется как внеклеточными, так и внутриклеточными факторами. В процессе старения организма не только снижается пролиферативная активность клеток, но также нарушаются процессы, регулирующие эту активность. Именно поэтому с возрастом повышается риск возникновения онкологических заболеваний. В связи с этим, необходимо детальное изучение механизмов регуляции пролиферации и регенерации, дабы предотвратить и/или предупредить последствия бесконтрольных процессов, протекающих в клетке и в организме, в целом.

Andreas Sturm Claudio Fiocchi and Alan D. Levine

7. CELL BIOLOGY: What a Cell Should Know (But May Not).

Клеточная пролиферация - увеличение числа клеток путем митоза,

приводящее к росту ткани, в отличие от другого способа увеличения ее

массы (например, отек). У нервных клеток пролиферация отсутствует.

Во взрослом организме продолжаются процессы развития, связанные

с делением и специализацией клеток. Эти процессы могут быть как нор-

мальными физиологическими, так и направленными на восстановление ор-

ганизма вследствие нарушения его целостности.

Значение пролиферации в медицине определяется способностью кле-

ток разных тканей к делению. С делением клеток связан процесс заживле-

ния ран и восстановление тканей после хирургических операций.

Пролиферация клеток лежит в основе регенерации (восстановления)

утраченных частей. Проблема регенерации представляет интерес для ме-

дицины, для восстановительной хирургии. Различают физиологическую,

репаративную и патологическую регенерацию.

Физиологическая - естественное восстановление клеток и тканей в

онтогенезе. Например, смена эритроцитов, клеток кожного эпителия.

Репаративная - восстановление после повреждения или гибели кле-

ток и тканей.

Патологическая - разрастание тканей не идентичных здоровым тка-

ням. Например, разрастание рубцовой ткани на месте ожога, хряща – на

месте перелома, размножение клеток соединительной ткани на месте мы-

шечной ткани сердца, раковая опухоль.

В последнее время принято разделять клетки тканей животных по спо-

собности к делению на 3 группы: лабильные, стабильные и статические.

К лабильным относятся клетки, которые быстро и легко обновляются

в процессе жизнедеятельности организма (клетки крови, эпителия, слизи-

стой ЖКТ, эпидермиса и др.).

К стабильным относятся клетки таких органов как печень, поджелу-

дочная железа, слюнные железы и др., которые обнаруживают ограничен-

ную способность к делению.

К статическим относятся клетки миокарда и нервной ткани, кото-

рые, как считает большинство исследователей, не делятся.

Изучение физиологии клетки имеет важное значение для понимания он-

тогенетического уровня организации живого и механизмов саморегуляции

клетки, обеспечивающих целостное функционирование всего организма.

Глава 6

ГЕНЕТИКА КАК НАУКА. ЗАКОНОМЕРНОСТИ

НАСЛЕДОВАНИЯ ПРИЗНАКОВ

6.1 Предмет, задачи и методы генетики

Наследственность и изменчивость являются фундаментальными свой-

ствами живого, т. к. характерны для живых существ любого уровня орга-

низации. Наука, изучающая закономерности наследственности и изменчи-

вости, называется генетикой.

Генетика как наука изучает наследственность и наследственную из-

менчивость, а именно, она имеет дело со следующими проблемами :

1) хранение генетической информации;

2) передача генетической информации;

3) реализация генетической информации (использование ее в конкрет-

ных признаках развивающегося организма под влиянием внешней среды);

4) изменение генетической информации (типы и причины изменений,

механизмы).

Первый этап развития генетики - 1900–1912 гг. С 1900 г. - переот-

крытие законов Г. Менделя учеными Х. Де Фризом, К. Корренсом, Э. Чер-

маком. Признание законов Г. Менделя.

Второй этап 1912–1925 гг. - создание хромосомной теории Т. Мор-

гана. Третий этап 1925–1940 гг. - открытие искусственного мутагенеза и

генетических процессов эволюции.

Четвертый этап 1940–1953 гг. - исследования по генному контролю

физиологических и биохимических процессов.

Пятый этап с 1953 г. и по настоящее время - развитие молекулярной

биологии.

Отдельные сведения по наследованию признаков были известны

очень давно, однако научные основы передачи признаков впервые были

изложены Г. Менделем в 1865 г. в работе: «Опыты над растительными

гибридами». Это были передовые мысли, но современники не придали

значение его открытию. Понятия «ген» в то время еще не было и Г. Мен-

дель говорил о «наследственных задатках», содержащихся в половых клет-

ках, но их природа была неизвестна.

В 1900 г. независимо друг от друга Х. Де Фриз, Э. Чермак и К. Кор-

ренс заново открыли законы Г. Менделя. Этот год и считается годом рож-

дения генетики как науки. В 1902 г. Т. Бовери, Э. Вильсон и Д. Сеттон сде-

лали предположение о связи наследственных факторов с хромосомами.

В 1906 г. У. Бетсон ввел термин «генетика», а в 1909 г. В. Иогансен -

«ген». В 1911 г. Т. Морган и сотрудники сформулировали основные поло-

жения хромосомной теории наследственности. Они доказали, что гены

расположены в определенных локусах хромосом в линейном порядке, по-

ние определенного признака.

Основные методы генетики: гибридологический, цитологический и

математический. Генетика активно использует и методы других смежных

наук: химии, биохимии, иммунологии, физики, микробиологии и др.

ПРОЛИФЕРАЦИЯ (от лат. proles-потомство и f его--несу), термин., введенный Вирховым для обозначения новообразования клеток путем. их размножения делением. Как понятие общее и весьма широкое П. может относиться к процессам самого различного характера. Так, П. клеток лежит в основе регенеративного новообразования тканей (см. Регенерация); П. наблюдается при различных гиперплазиях (см. Гиперплазия); наконец П. клеток лежит в основе опухолевого разрастания ткани. Естественно, что такие пролиферативные процессы могут иметь место в самых разнообразных тканях, однако способность тканевых элементов к П. далеко не одинакова: чем более высоко диференцированы клетки, тем в меньшей степени они способны к П.;в частности в комплексных тканях, напр. в эпителии, П. исходит почти как правило из тех тканевых зон, к-рые состоят из менее диференцированных элемен- тов; такие зоны принято называть пролифера-ционными центрами или центрами роста. В многослойном плоском эпителии пролифера-ционному центру соответствует зона Мальпи-гиевого или зародышевого слоя, в железах- места переходов выводных протоков в железистые пузырьки. Следствием П. обычно бывает образование новой ткани (продукция ткани),. впрочем это не является правилом: например элементы, происходящие в результате воспалительной П., часто не строят новую ткаяь, а лишь пронизывают, инфильтрируют окружающую ткань.
Поделитесь с друзьями или сохраните для себя:

Загрузка...